Virologica Sinica

, Volume 31, Issue 6, pp 490–499 | Cite as

Characterization of two monoclonal antibodies, 38F10 and 44D11, against the major envelope fusion protein of Helicoverpa armigera nucleopolyhedrovirus

  • Zijiao Zou
  • Jinliang Liu
  • Zhiying Wang
  • Fei Deng
  • Hualin Wang
  • Zhihong Hu
  • Manli WangEmail author
  • Tao ZhangEmail author
Research article


The envelope fusion protein F of baculoviruses is a class I viral fusion protein which play a significant role during virus entry into insect cells. F is initially synthesized as a precursor (F0) and then cleaved into a disulfide-linked F1 and F2 subunits during the process of protein maturation and secretion. To facilitate further investigation into the structure and function of F protein during virus infection, monoclonal antibodies (mAbs) against the F2 subunit of Helicoverpa armigera nucleopolyhedrovirus (HearNPV) (HaF) were generated. Two kinds of mAbs were obtained according to their different recognition epitopes: one kind of mAbs, as represented by 38F10, recognizes amino acid (aa) 85 to 123 of F2 and the other kind, represented by 44D11, recognizes aa 148 to 173 of F2. Western blot and immunofluorescence assay confirmed that both of the mAbs recognized the F protein expressed in HearNPV infected cells, however, only 44D11 could neutralize HearNPV infection. The results further showed that 44D11 may not interact with a receptor binding epitope, rather it was demonstrated to inhibit syncytium formation in cells expressing the HaF protein. The results imply that the monoclonal antibody 44D11 recognizes a region within HaF2 that may be involved in the F-mediated membrane fusion process.


HearNPV F protein monoclonal antibody 38F10 44D11 epitope neutralizing activity membrane fusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the grants from the National Science Foundation of China (No. 31370191 and 31621061), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDB11030400), and Open Research Fund Program of the Key Laboratory of Agricultural and Environmental Microbiology, Chinese Academy of Sciences. We acknowledge the Core Facility and Technical Support of Wuhan Institute of Virology for technical assistance. The authors would like to thank Dr. Xiulian Sun for the great help in statistical analysis.


  1. Booy FP, Roden RB, Greenstone HL, Schiller JT, Trus BL. 1998. Two antibodies that neutralize papillomavirus by different mechanisms show distinct binding patterns at 13 A resolution. J Mol Biol, 281: 95–106.CrossRefPubMedGoogle Scholar
  2. Bulach DM, Kumar CA, Zaia A, Liang B, Tribe DE. 1999. Group II nucleopolyhedrovirus subgroups revealed by phylogenetic analysis of polyhedrin and DNA polymerase gene sequences. J Invertebr Pathol, 73: 59–73.CrossRefPubMedGoogle Scholar
  3. Chen X, Zhang W, Wong J, Chun G, Lu A, McCutchen BF, Presnail JK, Herrmann R, Dolan M, Tingey S, Hu Z, Vlak JM. 2002. Comparative analysis of the complete genome sequences of Helicoverpa zea and Helicoverpa armigera single-nucleocapsid nucleopolyhedroviruses. J Gen Virol, 83: 673–684.CrossRefPubMedGoogle Scholar
  4. Fung HB, Guo Y. 2004. Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. Clin Ther, 26: 352–378.CrossRefPubMedGoogle Scholar
  5. Hayakawa T, Rohrmann GF, Hashimoto Y. 2000. Patterns of genome organization and content in lepidopteran baculoviruses. Virology, 278: 1–12.CrossRefPubMedGoogle Scholar
  6. He RT, Innis BL, Nisalak A, Usawattanakul W, Wang SL, Kalayanarooj S, Anderson R. 1995. Antibodies That Block Virus Attachment to Vero Cells Are a Major Component of the Human Neutralizing Antibody-Response against Dengue Virus Type-2. J Med Virol, 45: 451–461.CrossRefPubMedGoogle Scholar
  7. Herniou EA, Arif BM, Becnel JJ, Blissard GW, Bonning B, Harrison R, Jehle JA, Theilmann DA, Vlak JM. 2012. Family Baculoviridae. In: Virus Taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. King AMQ, Adams MJ, Cartens EB, Lefkowitz EJ (eds). Amsterdam: Elsevier, pp. 163–173Google Scholar
  8. Herniou EA, Olszewski JA, Cory JS, O’Reilly DR. 2003. The genome sequence and evolution of baculoviruses. Annu Rev Entomol, 48: 211–234.CrossRefPubMedGoogle Scholar
  9. Hohmann AW, Faulkner P. 1983. Monoclonal-Antibodies to Baculovirus Structural Proteins-Determination of Specificities by Western Blot Analysis. Virology, 125: 432–444.CrossRefPubMedGoogle Scholar
  10. Iorio RM, Syddall RJ, Glickman RL, Riel AM, Sheehan JP, Bratt MA. 1989. Identification of amino acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle disease virus. Virology, 173: 196–204.CrossRefPubMedGoogle Scholar
  11. Johnson S, Oliver C, Prince GA, Hemming VG, Pfarr DS, Wang SC, Dormitzer M, O’Grady J, Koenig S, Tamura JK, Woods R, Bansal G, Couchenour D, Tsao E, Hall WC, Young JF. 1997. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J Infect Dis, 176: 1215–1224.CrossRefPubMedGoogle Scholar
  12. Kadlec J, Loureiro S, Abrescia NGA, Stuart DI, Jones IM. 2008. The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol, 15: 1024–1030.CrossRefPubMedGoogle Scholar
  13. Li Z, Blissard GW. 2008. Functional analysis of the transmembrane (TM) domain of the Autographa californica multicapsid nucleopolyhedrovirus GP64 protein: substitution of heterologous TM domains. J Virol, 82: 3329–3341.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Li Z, Blissard GW. 2009a. The Autographa californica multicapsid nucleopolyhedrovirus GP64 protein: analysis of transmembrane domain length and sequence requirements. J Virol, 83: 4447–4461.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Li Z, Blissard GW. 2009b. The Pre-Transmembrane Domain of the Autographa californica Multicapsid Nucleopolyhedrovirus GP64 Protein Is Critical for Membrane Fusion and Virus Infectivity. J Virol, 83: 10993–11004.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Long G, Pan X, Vlak JM. 2007. Absence of N-linked glycans from the F2 subunit of the major baculovirus envelope fusion protein F enhances fusogenicity. J Gen Virol, 88: 441–449.CrossRefPubMedGoogle Scholar
  17. Long G, Westenberg M, Wang H, Vlak JM, Hu Z. 2006. Function, oligomerization and N-linked glycosylation of the Helicoverpa armigera single nucleopolyhedrovirus envelope fusion protein. J Gen Virol, 87: 839–846.CrossRefPubMedGoogle Scholar
  18. Monsma SA, Blissard GW. 1995. Identification of a Membrane-Fusion Domain and an Oligomerization Domain in the Baculovirus Gp64 Envelope Fusion Protein. J Virol 69: 2583–2595.PubMedPubMedCentralGoogle Scholar
  19. Monsma SA, Oomens AGP, Blissard GW. 1996. The GP64 envelope fusion protein is an essential baculovirus protein required for cell-to-cell transmission of infection. J Virol, 70: 4607–4616.PubMedPubMedCentralGoogle Scholar
  20. Pearson MN, Groten C, Rohrmann GF. 2000. Identification of the lymantria dispar nucleopolyhedrovirus envelope fusion protein provides evidence for a phylogenetic division of the Baculoviridae. J Virol, 74: 6126–6131.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Shen S, Wang M, Li X, Li S, van Oers MM, Vlak JM, Braakman I, Hu Z, Deng F, Wang H. 2016. Mutational and functional analysis of N-linked glycosylation of envelope fusion protein F of Helicoverpa armigera nucleopolyhedrovirus. J Gen Virol, 97: 988–999.CrossRefPubMedGoogle Scholar
  22. Smith TJ, Olson NH, Cheng RH, Liu H, Chase ES, Lee WM, Leippe DM, Mosser AG, Rueckert RR, Baker TS. 1993. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J Virol, 67: 1148–1158.PubMedPubMedCentralGoogle Scholar
  23. Song J, Wang R, Deng F, Wang H, Hu Z. 2008. Functional studies of per os infectivity factors of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus. J Gen Virol, 89: 2331–2338.CrossRefPubMedGoogle Scholar
  24. Summers MD. 2006. Milestones leading to the genetic engineering of baculoviruses as expression vector systems and viral pesticides. Adv Virus Res, 68: 3–73.CrossRefPubMedGoogle Scholar
  25. Tan Y, Jiang L, Wang M, Yin F, Deng F, Liu M, Hu Z, Wang H. 2008. Mutagenesis and nuclear magnetic resonance analyses of the fusion peptide of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus F protein. J Virol, 82: 8138–8148.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Volkman LE, Goldsmith PA. 1985. Mechanism of Neutralization of Budded Autographa-Californica Nuclear Polyhedrosis-Virus by a Monoclonal-Antibody-Inhibition of Entry by Adsorptive Endocytosis. Virology, 143: 185–195.CrossRefPubMedGoogle Scholar
  27. Volkman LE, Summers MD. 1977. Autographa californica nuclear polyhedrosis virus: comparative infectivity of the occluded, alkali-liberated, and nonoccluded forms. J Invertebr Pathol, 30: 102–103.CrossRefPubMedGoogle Scholar
  28. Wang M, Tan Y, Yin F, Deng F, Vlak JM, Hu Z, Wang H. 2008. The F-like protein Ac23 enhances the infectivity of the budded virus of gp64-null Autographa californica multinucleocapsid nucleopolyhedrovirus pseudotyped with baculovirus envelope fusion protein F. J Virol, 82: 9800–9804.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Wang M, Wang J, Yin F, Tan Y, Deng F, Chen X, Jehle JA, Vlak JM, Hu Z, Wang H. 2014. Unraveling the entry mechanism of baculoviruses and its evolutionary implications. J Virol, 88: 2301–2311.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Wang M, Yin F, Shen S, Tan Y, Deng F, Vlak JM, Hu Z, Wang H. 2010. Partial functional rescue of Helicoverpa armigera single nucleocapsid nucleopolyhedrovirus infectivity by replacement of F protein with GP64 from Autographa californica multicapsid nucleopolyhedrovirus. J Virol, 84: 11505–11514.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Westenberg M, Veenman F, Roode EC, Goldbach RW, Vlak JM, Zuidema D. 2004. Functional analysis of the putative fusion domain of the baculovirus envelope fusion protein F. J Virol, 78: 6946–6954.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Wibmer CK, Moore PL, Morris L. 2015. HIV broadly neutralizing antibody targets. Curr Opin HIV AIDS, 10: 135–143.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yin F, Wang M, Tan Y, Deng F, Vlak JM, Hu Z, Wang H. 2014. Identification and functional analysis of inter-subunit disulfide bonds of the F protein of Helicoverpa armigera nucleopolyhedrovirus. J Gen Virol, 95: 2820–2830.CrossRefPubMedGoogle Scholar
  34. Zhou J, Blissard GW. 2006. Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein. Virology, 352: 427–437.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Zhou J, Blissard GW. 2008. Identification of a GP64 subdomain involved in receptor binding by budded virions of the baculovirus Autographica californica multicapsid nucleopolyhedrovirus. J Virol, 82: 4449–4460.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Zijiao Zou
    • 1
  • Jinliang Liu
    • 1
  • Zhiying Wang
    • 1
  • Fei Deng
    • 1
  • Hualin Wang
    • 1
  • Zhihong Hu
    • 1
  • Manli Wang
    • 1
    Email author
  • Tao Zhang
    • 1
    Email author
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations