Virologica Sinica

, Volume 31, Issue 5, pp 415–424 | Cite as

Identification of interaction between HIV-1 glycoprotein 41 and integrase

  • Xiaowei Zhang
  • Fei Zhang
  • Xiaohe Ma
  • Xing Zhao
  • Wei Li
  • Zhiping Zhang
  • Jibin Zhang
  • Xian-En Zhang
  • Zongqiang Cui
Research Article

Abstract

Human immunodeficiency virus-1 (HIV-1) encodes 15 viral proteins. Protein-protein interactions play a large role in the function of these proteins. In this study, we attempted to identify novel interactions between the HIV-1 proteins to better understand the role played by viral protein-protein interactions in the life cycle of HIV-1. Genes encoding the 15 viral proteins from the HIV-1 strain AD8 were inserted into the plasmids of a yeast two-hybrid system. By screening 120 pairs of proteins, interactions between seven pairs were found. This led to the discovery of an interaction between the HIV-1 proteins integrase (IN) and glycoprotein 41 (gp41), which was confirmed by both co-immunoprecipitation (Co-IP) assays and fluorescence resonance energy transfer (FRET) imaging in live cells. In addition, it was found that the amino acids at positions 76–100 of gp41 are required for it to bind to IN. Deletion of this region from gp41 prevented its interaction with IN and reduced the production of HIV-1 in 293T cells. This study provides new information on HIV-1 protein-protein interactions which improves the understanding of the biological functions of gp41 and IN during the virus life cycle.

Keywords

human immunodeficiency virus-1 (HIV-1) glycoprotein 41 (gp41) integrase (IN) protein-protein interactions yeast two-hybrid assay 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM. 2014. Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol, 12: 750–764.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barre-Sinoussi F, Ross AL, Delfraissy JF. 2013. Past, present and future: 30 years of HIV research. Nat Rev Microbiol, 11: 877–883.CrossRefPubMedGoogle Scholar
  3. Biswas N, Wang T, Ding M, Tumne A, Chen Y, Wang Q, Gupta P. 2012. ADAR1 is a novel multi targeted anti-HIV-1 cellular protein. Virology, 422: 265–277.CrossRefPubMedGoogle Scholar
  4. Briggs JA, Simon MN, Gross I, Krausslich HG, Fuller SD, Vogt VM, Johnson MC. 2004. The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol, 11: 672–675.CrossRefPubMedGoogle Scholar
  5. Bukovsky A, Gottlinger H. 1996. Lack of integrase can markedly affect human immunodeficiency virus type 1 particle production in the presence of an active viral protease. J Virol, 70: 6820–6825.PubMedPubMedCentralGoogle Scholar
  6. Caffrey M. 2001. Model for the structure of the HIV gp41 ectodomain: insight into the intermolecular interactions of the gp41 loop. Biochim Biophys Acta, 31: 2–3.Google Scholar
  7. Caffrey M, Cai M, Kaufman J, Stahl SJ, Wingfield PT, Covell DG, Gronenborn AM, Clore GM. 1998. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J, 17: 4572–4584.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chan DC, Fass D, Berger JM, Kim PS. 1997. Core structure of gp41 from the HIV envelope glycoprotein. Cell, 89: 263–273.CrossRefPubMedGoogle Scholar
  9. Chen JC, Krucinski J, Miercke LJ, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM. 2000. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A, 97: 8233–8238.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Ciuffi A, Llano M, Poeschla E, Hoffmann C, Leipzig J, Shinn P, Ecker JR, Bushman F. 2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med, 11: 1287–1289.CrossRefPubMedGoogle Scholar
  11. Cullen BR. 1998. HIV-1 auxiliary proteins: making connections in a dying cell. Cell, 93: 685–692.CrossRefPubMedGoogle Scholar
  12. de Rocquigny H, Petitjean P, Tanchou V, Decimo D, Drouot L, Delaunay T, Darlix JL, Roques BP. 1997. The zinc fingers of HIV nucleocapsid protein NCp7 direct interactions with the viral regulatory protein Vpr. J Biol Chem, 272: 30753–30759.CrossRefPubMedGoogle Scholar
  13. Frankel AD, Young JA. 1998. HIV-1: fifteen proteins and an RNA. Annu Rev Biochem, 67: 1–25.CrossRefPubMedGoogle Scholar
  14. Freed EO. 2004. HIV-1 and the host cell: an intimate association. Trends Microbiol, 12: 170–177.CrossRefPubMedGoogle Scholar
  15. Gleenberg IO, Herschhorn A, Hizi A. 2007. Inhibition of the activities of reverse transcriptase and integrase of human immunodeficiency virus type-1 by peptides derived from the homologous viral protein R (Vpr). J Mol Biol, 369: 1230–1243.CrossRefPubMedGoogle Scholar
  16. Goff SP. 2007. Host factors exploited by retroviruses. Nat Rev Microbiol, 5: 253–263.CrossRefPubMedGoogle Scholar
  17. Guarente L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol, 101: 181–191.CrossRefPubMedGoogle Scholar
  18. Hehl EA, Joshi P, Kalpana GV, Prasad VR. 2004. Interaction between human immunodeficiency virus type 1 reverse transcriptase and integrase proteins. J Virol, 78: 5056–5067.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang J, Wang F, Argyris E, Chen K, Liang Z, Tian H, Huang W, Squires K, Verlinghieri G, Zhang H. 2007. Cellular micro-RNAs contribute to HIV-1 latency in resting primary CD4+ T lymphocytes. Nat Med, 13: 1241–1247.CrossRefPubMedGoogle Scholar
  20. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE. 1988. Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature, 331: 280–283.CrossRefPubMedGoogle Scholar
  21. Jenkins Y, Pornillos O, Rich RL, Myszka DG, Sundquist WI, Malim MH. 2001. Biochemical analyses of the interactions between human immunodeficiency virus type 1 Vpr and p6 (Gag). J Virol, 75: 10537–10542.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Karpova TS, Baumann CT, He L, Wu X, Grammer A, Lipsky P, Hager GL, McNally JG. 2003. Fluorescence resonance energy transfer from cyan to yellow fluorescent protein detected by acceptor photobleaching using confocal microscopy and a single laser. J Microsc, 209: 56–70.CrossRefPubMedGoogle Scholar
  23. Kashanchi F, Piras G, Radonovich MF, Duvall JF, Fattaey A, Chiang CM, Roeder RG, Brady JN. 1994. Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature, 367: 295–299.CrossRefPubMedGoogle Scholar
  24. Konig R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang CY, Tu BP, De Jesus PD, Lilley CE, Seidel S, Opaluch AM, Caldwell JS, Weitzman MD, Kuhen KL, Bandyopadhyay S, Ideker T, Orth AP, Miraglia LJ, Bushman FD, Young JA, Chanda SK. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell, 135: 49–60.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Levin A, Hayouka Z, Brack-Werner R, Volsky DJ, Friedler A, Loyter A. 2009. Novel regulation of HIV-1 replication and pathogenicity: Rev inhibition of integration. Protein Eng Des Sel, 22: 753–763.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Levy JA. 1993. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev, 57: 183–289.PubMedPubMedCentralGoogle Scholar
  27. Marchio S, Alfano M, Primo L, Gramaglia D, Butini L, Gennero L, De Vivo E, Arap W, Giacca M, Pasqualini R, Bussolino F. 2005. Cell surface-associated Tat modulates HIV-1 infection and spreading through a specific interaction with gp120 viral envelope protein. Blood, 105: 2802–2811.CrossRefPubMedGoogle Scholar
  28. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature, 388: 882–887.CrossRefPubMedGoogle Scholar
  29. Mockli N, Auerbach D. 2004. Quantitative beta-galactosidase assay suitable for high-throughput applications in the yeast twohybrid system. Biotechniques, 36: 872–876.PubMedGoogle Scholar
  30. Murakami T, Freed EO. 2000. Genetic evidence for an interaction between human immunodeficiency virus type 1 matrix and alpha-helix 2 of the gp41 cytoplasmic tail. J Virol, 74: 3548–3554.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Oz I, Avidan O, Hizi A. 2002. Inhibition of the integrases of human immunodeficiency viruses type 1 and type 2 by reverse transcriptases. Biochem J, 361: 557–566.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Piot P, Abdool Karim SS, Hecht R, Legido-Quigley H, Buse K, Stover J, Resch S, Ryckman T, Mogedal S, Dybul M, Goosby E, Watts C, Kilonzo N, McManus J, Sidibe M. 2015. Defeating AIDS—advancing global health. Lancet, 386: 171–218.CrossRefPubMedGoogle Scholar
  33. Quinn TC. 2008. HIV epidemiology and the effects of antiviral therapy on long-term consequences. AIDS, 22, Suppl 3:S7–S 12.Google Scholar
  34. Roche J, Louis JM, Grishaev A, Ying J, Bax A. 2014. Dissociation of the trimeric gp41 ectodomain at the lipid-water interface suggests an active role in HIV-1 Env-mediated membrane fusion. Proc Natl Acad Sci U S A, 111: 3425–3430.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Rosenbluh J, Hayouka Z, Loya S, Levin A, Armon-Omer A, Britan E, Hizi A, Kotler M, Friedler A, Loyter A. 2007. Interaction between HIV-1 Rev and integrase proteins: a basis for the development of anti-HIV peptides. J Biol Chem, 282: 15743–15753.CrossRefPubMedGoogle Scholar
  36. Selig L, Pages JC, Tanchou V, Preveral S, Berlioz-Torrent C, Liu LX, Erdtmann L, Darlix J, Benarous R, Benichou S. 1999. Interaction with the p6 domain of the gag precursor mediates incorporation into virions of Vpr and Vpx proteins from primate lentiviruses. J Virol, 73: 592–600.PubMedPubMedCentralGoogle Scholar
  37. Shin CG, Taddeo B, Haseltine WA, Farnet CM. 1994. Genetic analysis of the human immunodeficiency virus type 1 integrase protein. J Virol, 68: 1633–1642.PubMedPubMedCentralGoogle Scholar
  38. Suzuki S, Urano E, Hashimoto C, Tsutsumi H, Nakahara T, Tanaka T, Nakanishi Y, Maddali K, Han Y, Hamatake M, Miyauchi K, Pommier Y, Beutler JA, Sugiura W, Fuji H, Hoshino T, Itotani K, Nomura W, Narumi T, Yamamoto N, Komano JA, Tamamura H. 2010. Peptide HIV-1 integrase inhibitors from HIV-1 gene products. J Med Chem, 53: 5356–5360.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Swanson CM, Malim MH. 2008. SnapShot: HIV-1 proteins. Cell, 133: 742, 742.e1.Google Scholar
  40. Tang H, Kuhen KL, Wong-Staal F. 1999. Lentivirus replication and regulation. Annu Rev Genet, 33: 133–170.CrossRefPubMedGoogle Scholar
  41. Tavassoli A. 2011. Targeting the protein-protein interactions of the HIV lifecycle. Chem Soc Rev, 40: 1337–1346.CrossRefPubMedGoogle Scholar
  42. Tekeste SS, Wilkinson TA, Weiner EM, Xu X, Miller JT, Le Grice SF, Clubb RT, Chow SA. 2015. Interaction between Reverse Transcriptase and Integrase Is Required for Reverse Transcription during HIV-1 Replication. J Virol, 89: 12058–12069.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wilkinson TA, Januszyk K, Phillips ML, Tekeste SS, Zhang M, Miller JT, Le Grice SF, Clubb RT, Chow SA. 2009. Identifying and characterizing a functional HIV-1 reverse transcriptasebinding site on integrase. J Biol Chem, 284: 7931–7939.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wu L, Gerard NP, Wyatt R, Choe H, Parolin C, Ruffing N, Borsetti A, Cardoso AA, Desjardin E, Newman W, Gerard C, Sodroski J. 1996. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature, 384: 179–183.CrossRefPubMedGoogle Scholar
  45. Wyatt R, Desjardin E, Olshevsky U, Nixon C, Binley J, Olshevsky V, Sodroski J. 1997. Analysis of the interaction of the human immunodeficiency virus type 1 gp120 envelope glycoprotein with the gp41 transmembrane glycoprotein. J Virol, 71: 9722–9731.PubMedPubMedCentralGoogle Scholar
  46. Wyatt R, Sodroski J. 1998. The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science, 280: 1884–1888.CrossRefPubMedGoogle Scholar
  47. Yung E, Sorin M, Pal A, Craig E, Morozov A, Delattre O, Kappes J, Ott D, Kalpana GV. 2001. Inhibition of HIV-1 virion production by a transdominant mutant of integrase interactor 1. Nat Med, 7: 920–926.CrossRefPubMedGoogle Scholar
  48. Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ, Espeseth AS. 2008. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe, 4: 495–504.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Xiaowei Zhang
    • 1
  • Fei Zhang
    • 3
  • Xiaohe Ma
    • 1
  • Xing Zhao
    • 1
  • Wei Li
    • 1
  • Zhiping Zhang
    • 1
  • Jibin Zhang
    • 3
  • Xian-En Zhang
    • 2
  • Zongqiang Cui
    • 1
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  3. 3.College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations