Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Structure-function relationship of the mammarenavirus envelope glycoprotein
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Crystal structure of Usutu virus envelope protein in the pre-fusion state

26 November 2018

Zimin Chen, Fei Ye, … Guangwen Lu

A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics

22 January 2021

Jyoti Verma & Naidu Subbarao

The surface-exposed loop region of norovirus GII.3 VP1 plays an essential role in binding histo-blood group antigens

09 April 2019

Gaobo Zhang, Jia Wang, … Xiulian Sun

Envelope Glycoprotein based multi-epitope vaccine against a co-infection of Human Herpesvirus 5 and Human Herpesvirus 6 using in silico strategies

13 October 2022

Bharath Sai Gandhamaneni, HemaNandini Rajendran Krishnamoorthy, … Ramanathan Karuppasamy

Expression of chimeric proteins based on a backbone of the GII.4 norovirus VP1 and their application in the study of a GII.6 norovirus-specific blockade epitope

03 February 2022

Yuqi Huo, Jie Ma, … Qingxia Zhao

Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation

23 November 2022

Lipsa Priyadarsinee, Himakshi Sarma & G Narahari Sastry

The key amino acids of E protein involved in early flavivirus infection: viral entry

03 July 2021

Tao Hu, Zhen Wu, … Anchun Cheng

Six-helix bundle completion in the distal C-terminal heptad repeat region of gp41 is required for efficient human immunodeficiency virus type 1 infection

02 April 2018

Dehua Liu, Hongyun Wang, … Zene Matsuda

A bivalent protein targeting glycans and HR1 domain in spike protein potently inhibited infection of SARS-CoV-2 and other human coronaviruses

08 July 2021

Yanxing Cai, Wei Xu, … Shibo Jiang

Download PDF
  • Review
  • Published: 04 August 2016

Structure-function relationship of the mammarenavirus envelope glycoprotein

  • Wei Wang1,
  • Zheng Zhou1,
  • Leike Zhang1,
  • Shaobo Wang1 &
  • …
  • Gengfu Xiao1 

Virologica Sinica volume 31, pages 380–394 (2016)Cite this article

  • 892 Accesses

  • 14 Citations

  • Metrics details

Abstract

Mammarenaviruses, including lethal pathogens such as Lassa virus and Junín virus, can cause severe hemorrhagic fever in humans. Entry is a key step for virus infection, which starts with binding of the envelope glycoprotein (GP) to receptors on target cells and subsequent fusion of the virus with target cell membranes. The GP precursor is synthesized as a polypeptide, and maturation occurs by two cleavage events, yielding a tripartite GP complex (GPC) formed by a stable signal peptide (SSP), GP1 and GP2. The unique retained SSP interacts with GP2 and plays essential roles in virion maturation and infectivity. GP1 is responsible for binding to the cell receptor, and GP2 is a class I fusion protein. The native structure of the tripartite GPC is unknown. GPC is critical for the receptor binding, membrane fusion and neutralization antibody recognition. Elucidating the molecular mechanisms underlining the structure–function relationship of the three subunits is the key for understanding their function and can facilitate novel avenues for combating virus infections. This review summarizes the basic aspects and recent research of the structure–function relationship of the three subunits. We discuss the structural basis of the receptor-binding domain in GP1, the interaction between SSP and GP2 and its role in virion maturation and membrane fusion, as well as the mechanism by which glycosylation stabilizes the GPC structure and facilitates immune evasion. Understanding the molecular mechanisms involved in these aspects will contribute to the development of novel vaccines and treatment strategies against mammarenaviruses infection.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Abraham J, Corbett KD, Farzan M, Choe H, Harrison SC. 2010. Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol, 17: 438–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham J, Kwong JA, Albarino CG, Lu JG, Radoshitzky SR, Salazar-Bravo J, Farzan M, Spiropoulou CF, Choe H. 2009. Hostspecies transferrin receptor 1 orthologs are cellular receptors for nonpathogenic new world clade B arenaviruses. PLoS Pathog, 5: e1000358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Agnihothram SS, York J, Nunberg JH. 2006. Role of the stable signal peptide and cytoplasmic domain of G2 in regulating intracellular transport of the Junin virus envelope glycoprotein complex. J Virol, 80: 5189–5198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agnihothram SS, York J, Trahey M, Nunberg JH. 2007. Bitopic membrane topology of the stable signal peptide in the tripartite Junin virus GP-C envelope glycoprotein complex. J Virol, 81: 4331–4337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albarino CG, Bird BH, Chakrabarti AK, Dodd KA, Flint M, Bergeron E, White DM, Nichol ST. 2011a. The major determinant of attenuation in mice of the Candid1 vaccine for Argentine hemorrhagic fever is located in the G2 glycoprotein transmembrane domain. J Virol, 85: 10404–10408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albarino CG, Bird BH, Chakrabarti AK, Dodd KA, White DM, Bergeron E, Shrivastava-Ranjan P, Nichol ST. 2011b. Reverse genetics generation of chimeric infectious Junin/Lassa virus is dependent on interaction of homologous glycoprotein stable signal peptide and G2 cytoplasmic domains. J Virol, 85: 112–122.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong C, Lillie RD. 1934. Experimental lymphocytic choriomeningitis of monkeys and mice produced by a virus encountered in studies of the 1933 St Louis encephalitis epidemic. Public Health Rep., 49: 1019–1027.

    Article  Google Scholar 

  • Bederka LH, Bonhomme CJ, Ling EL, Buchmeier MJ. 2014. Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio, 5: e02063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedossa P, Ferlicot S, Paradis V, Dargere D, Bonvoust F, Vidaud M. 2002. Dystroglycan expression in hepatic stellate cells: role in liver fibrosis. Lab Invest, 82: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  • Beyer WR, Popplau D, Garten W, von Laer D, Lenz O. 2003. Endoproteolytic processing of the lymphocytic choriomeningitis virus glycoprotein by the subtilase SKI-1/S1P. J Virol, 77: 2866–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolken TC, Laquerre S, Zhang Y, Bailey TR, Pevear DC, Kickner SS, Sperzel LE, Jones KF, Warren TK, Amanda Lund S, Kirkwood-Watts DL, King DS, Shurtleff AC, Guttieri MC, Deng Y, Bleam M, Hruby DE. 2006. Identification and characterization of potent small molecule inhibitor of hemorrhagic fever New World arenaviruses. Antiviral Res, 69: 86–97.

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme CJ, Capul AA, Lauron EJ, Bederka LH, Knopp KA, Buchmeier MJ. 2011. Glycosylation modulates arenavirus glycoprotein expression and function. Virology, 409: 223–233.

    Article  CAS  PubMed  Google Scholar 

  • Bonhomme CJ, Knopp KA, Bederka LH, Angelini MM, Buchmeier MJ. 2013. LCMV glycosylation modulates viral fitness and cell tropism. PLoS One, 8: e53273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borrow P, Oldstone MB. 1994. Mechanism of lymphocytic choriomeningitis virus entry into cells. Virology, 198: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Bowden TA, Crispin M, Graham SC, Harvey DJ, Grimes JM, Jones EY, Stuart DI. 2009. Unusual molecular architecture of the machupo virus attachment glycoprotein. J Virol, 83: 8259–8265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowen MD, Peters CJ, Nichol ST. 1996. The phylogeny of New World (Tacaribe complex) arenaviruses. Virology, 219: 285–290.

    Article  CAS  PubMed  Google Scholar 

  • Bowen MD, Peters CJ, Nichol ST. 1997. Phylogenetic analysis of the Arenaviridae: patterns of virus evolution and evidence for cospeciation between arenaviruses and their rodent hosts. Mol Phylogenet Evol, 8: 301–316.

    Article  CAS  PubMed  Google Scholar 

  • Braakman I, van Anken E. 2000. Folding of viral envelope glycoproteins in the endoplasmic reticulum. Traffic, 1: 533–539.

    Article  CAS  PubMed  Google Scholar 

  • Branco LM, Grove JN, Moses LM, Goba A, Fullah M, Momoh M, Schoepp RJ, Bausch DG, Garry RF. 2010. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects. Virol J, 7: 306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briknarova K, Thomas CJ, York J, Nunberg JH. 2011. Structure of a zinc-binding domain in the Junin virus envelope glycoprotein. J Biol Chem, 286: 1528–1536.

    Article  CAS  PubMed  Google Scholar 

  • Buchmeier MJ, de la Torre JC, Peters CJ. 2007. Fields Virology, 4th edn. Philadelphia: Lippincott-Raven, pp. 1791–1828.

    Google Scholar 

  • Burns JW, Buchmeier MJ. 1991. Protein-protein interactions in lymphocytic choriomeningitis virus. Virology, 183: 620–629.

    Article  CAS  PubMed  Google Scholar 

  • Burri DJ, da Palma JR, Seidah NG, Zanotti G, Cendron L, Pasquato A, Kunz S. 2013. Differential recognition of Old World and New World arenavirus envelope glycoproteins by subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P). J Virol, 87: 6406–6414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burri DJ, Pasqual G, Rochat C, Seidah NG, Pasquato A, Kunz S. 2012. Molecular characterization of the processing of arenavirus envelope glycoprotein precursors by subtilisin kexin isozyme-1/site-1 protease. J Virol, 86: 4935–4946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cajimat MN, Milazzo ML, Rollin PE, Nichol ST, Bowen MD, Ksiazek TG, Fulhorst CF. 2009. Genetic diversity among Bolivian arenaviruses. Virus Res, 140: 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Cao W, Henry MD, Borrow P, Yamada H, Elder JH, Ravkov EV, Nichol ST, Compans RW, Campbell KP, Oldstone MB. 1998. Identification of alpha-dystroglycan as a receptor for lymphocytic choriomeningitis virus and Lassa fever virus. Science, 282: 2079–2081.

    Article  CAS  PubMed  Google Scholar 

  • Cashman KA, Smith MA, Twenhafel NA, Larson RA, Jones KF, Allen RD, 3rd, Dai D, Chinsangaram J, Bolken TC, Hruby DE, Amberg SM, Hensley LE, Guttieri MC. 2011. Evaluation of Lassa antiviral compound ST-193 in a guinea pig model. Antiviral Res, 90: 70–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charrel RN, Feldmann H, Fulhorst CF, Khelifa R, de Chesse R, de Lamballerie X. 2002. Phylogeny of New World arenaviruses based on the complete coding sequences of the small genomic segment identified an evolutionary lineage produced by intrasegmental recombination. Biochem Biophys Res Commun, 296: 1118–1124.

    Article  CAS  PubMed  Google Scholar 

  • Clegg JC. 2002. Molecular phylogeny of the arenaviruses. Curr Top Microbiol Immunol, 262: 1–24.

    CAS  PubMed  Google Scholar 

  • Cohen-Dvashi H, Cohen N, Israeli H, Diskin R. 2015. Molecular Mechanism for LAMP1 Recognition by Lassa Virus. J Virol, 89: 7584–7592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosset FL, Marianneau P, Verney G, Gallais F, Tordo N, Pecheur EI, ter Meulen J, Deubel V, Bartosch B. 2009. Characterization of Lassa virus cell entry and neutralization with Lassa virus pseudoparticles. J Virol, 83: 3228–3237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Palma JR, Burri DJ, Oppliger J, Salamina M, Cendron L, de Laureto PP, Seidah NG, Kunz S, Pasquato A. 2014. Zymogen activation and subcellular activity of subtilisin kexin isozyme 1/site 1 protease. J Biol Chem, 289: 35743–35756.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Di Simone C, Zandonatti MA, Buchmeier MJ. 1994. Acidic pH triggers LCMV membrane fusion activity and conformational change in the glycoprotein spike. Virology, 198: 455–465.

    Article  PubMed  Google Scholar 

  • Droniou-Bonzom ME, Reignier T, Oldenburg JE, Cox AU, Exline CM, Rathbun JY, Cannon PM. 2011. Substitutions in the glycoprotein (GP) of the Candid#1 vaccine strain of Junin virus increase dependence on human transferrin receptor 1 for entry and destabilize the metastable conformation of GP. J Virol, 85: 13457–13462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler R, Lenz O, Garten W, Strecker T. 2006. The role of single N-glycans in proteolytic processing and cell surface transport of the Lassa virus glycoprotein GP-C. Virol J, 3: 41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eichler R, Lenz O, Strecker T, Eickmann M, Klenk HD, Garten W. 2003a. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. EMBO Rep, 4: 1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler R, Lenz O, Strecker T, Eickmann M, Klenk HD, Garten W. 2004a. Lassa virus glycoprotein signal peptide displays a novel topology with an extended endoplasmic reticulum luminal region. J Biol Chem, 279: 12293–12299.

    Article  CAS  PubMed  Google Scholar 

  • Eichler R, Lenz O, Strecker T, Garten W. 2003b. Signal peptide of Lassa virus glycoprotein GP-C exhibits an unusual length. FEBS Lett, 538: 203–206.

    Article  CAS  PubMed  Google Scholar 

  • Eichler R, Strecker T, Kolesnikova L, ter Meulen J, Weissenhorn W, Becker S, Klenk HD, Garten W, Lenz O. 2004b. Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). Virus Res, 100: 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Emonet S, Lemasson JJ, Gonzalez JP, de Lamballerie X, Charrel RN. 2006. Phylogeny and evolution of old world arenaviruses. Virology, 350: 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Enria DA, Barrera Oro JG. 2002. Junin virus vaccines. Curr Top Microbiol Immunol, 263: 239–261.

    CAS  PubMed  Google Scholar 

  • Eschli B, Quirin K, Wepf A, Weber J, Zinkernagel R, Hengartner H. 2006. Identification of an N-terminal trimeric coiled-coil core within arenavirus glycoprotein 2 permits assignment to class I viral fusion proteins. J Virol, 80: 5897–5907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eschli B, Zellweger RM, Wepf A, Lang KS, Quirin K, Weber J, Zinkernagel RM, Hengartner H. 2007. Early antibodies specific for the neutralizing epitope on the receptor binding subunit of the lymphocytic choriomeningitis virus glycoprotein fail to neutralize the virus. J Virol, 81: 11650–11657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher-Hoch SP, McCormick JB. 2001. Towards a human Lassa fever vaccine. Rev Med Virol, 11: 331–341.

    Article  CAS  PubMed  Google Scholar 

  • Flanagan ML, Oldenburg J, Reignier T, Holt N, Hamilton GA, Martin VK, Cannon PM. 2008. New world clade B arenaviruses can use transferrin receptor 1 (TfR1)-dependent and -independent entry pathways, and glycoproteins from human pathogenic strains are associated with the use of TfR1. J Virol, 82: 938–948.

    Article  CAS  PubMed  Google Scholar 

  • Froeschke M, Basler M, Groettrup M, Dobberstein B. 2003. Long-lived signal peptide of lymphocytic choriomeningitis virus glycoprotein pGP-C. J Biol Chem, 278: 41914–41920.

    Article  CAS  PubMed  Google Scholar 

  • Fuller-Pace FV, Southern PJ. 1989. Detection of virus-specific RNA-dependent RNA polymerase activity in extracts from cells infected with lymphocytic choriomeningitis virus: in vitro synthesis of full-length viral RNA species. J Virol, 63: 1938–1944.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garces F, Lee JH, de Val N, Torrents de la Pena A, Kong L, Puchades C, Hua Y, Stanfield RL, Burton DR, Moore JP, Sanders RW, Ward AB, Wilson IA. 2015. Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 43: 1053–1063.

    Article  CAS  PubMed  Google Scholar 

  • Garces F, Sok D, Kong L, McBride R, Kim HJ, Saye-Francisco KF, Julien JP, Hua Y, Cupo A, Moore JP, Paulson JC, Ward AB, Burton DR, Wilson IA. 2014. Structural evolution of glycan recognition by a family of potent HIV antibodies. Cell, 159: 69–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcin D, Kolakofsky D. 1990. A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol, 64: 6196–6203.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goncalves AR, Moraz ML, Pasquato A, Helenius A, Lozach PY, Kunz S. 2013. Role of DC-SIGN in Lassa virus entry into human dendritic cells. J Virol, 87: 11504–11515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunther S, Emmerich P, Laue T, Kuhle O, Asper M, Jung A, Grewing T, ter Meulen J, Schmitz H. 2000. Imported lassa fever in Germany: molecular characterization of a new lassa virus strain. Emerg Infect Dis, 6: 466–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hara Y, Kanagawa M, Kunz S, Yoshida-Moriguchi T, Satz JS, Kobayashi YM, Zhu Z, Burden SJ, Oldstone MB, Campbell KP. 2011. Like-acetylglucosaminyltransferase (LARGE)-dependent modification of dystroglycan at Thr-317/319 is required for laminin binding and arenavirus infection. Proc Natl Acad Sci U S A, 108: 17426–17431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison SC. 2008. Viral membrane fusion. Nat Struct Mol Biol, 15: 690–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hastie KM, Igonet S, Sullivan BM, Legrand P, Zandonatti MA, Robinson JE, Garry RF, Rey FA, Oldstone MB, Saphire EO. 2016. Crystal structure of the prefusion surface glycoprotein of the prototypic arenavirus LCMV. Nat Struct Mol Biol, 23: 513–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Igonet S, Vaney MC, Vonrhein C, Bricogne G, Stura EA, Hengartner H, Eschli B, Rey FA. 2011. X-ray structure of the arenavirus glycoprotein GP2 in its postfusion hairpin conformation. Proc Natl Acad Sci U S A, 108: 19967–19972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imperiali M, Thoma C, Pavoni E, Brancaccio A, Callewaert N, Oxenius A. 2005. O Mannosylation of alpha-dystroglycan is essential for lymphocytic choriomeningitis virus receptor function. J Virol, 79: 14297–14308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jae LT, Raaben M, Herbert AS, Kuehne AI, Wirchnianski AS, Soh TK, Stubbs SH, Janssen H, Damme M, Saftig P, Whelan SP, Dye JM, Brummelkamp TR. 2014. Lassa virus entry requires a trigger-induced receptor switch. Science, 344: 1506–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA, Velds A, Kerkhoven RM, Carette JE, Topaloglu H, Meinecke P, Wessels MW, Lefeber DJ, Whelan SP, van Bokhoven H, Brummelkamp TR. 2013. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science, 340: 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KM, McCormick JB, Webb PA, Smith ES, Elliott LH, King IJ. 1987. Clinical virology of Lassa fever in hospitalized patients. J Infect Dis, 155: 456–464.

    Article  CAS  PubMed  Google Scholar 

  • Klewitz C, Klenk HD, ter Meulen J. 2007. Amino acids from both N-terminal hydrophobic regions of the Lassa virus envelope glycoprotein GP-2 are critical for pH-dependent membrane fusion and infectivity. J Gen Virol, 88: 2320–2328.

    Article  CAS  PubMed  Google Scholar 

  • Kong L, Lee JH, Doores KJ, Murin CD, Julien JP, McBride R, Liu Y, Marozsan A, Cupo A, Klasse PJ, Hoffenberg S, Caulfield M, King CR, Hua Y, Le KM, Khayat R, Deller MC, Clayton T, Tien H, Feizi T, Sanders RW, Paulson JC, Moore JP, Stanfield RL, Burton DR, Ward AB, Wilson IA. 2013. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat Struct Mol Biol, 20: 796–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranzusch PJ, Whelan SP. 2012. Architecture and regulation of negative-strand viral enzymatic machinery. RNA Biol, 9: 941–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunz S, Edelmann KH, de la Torre JC, Gorney R, Oldstone MB. 2003. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions. Virology, 314: 168–178.

    Article  CAS  PubMed  Google Scholar 

  • Kunz S, Rojek JM, Kanagawa M, Spiropoulou CF, Barresi R, Campbell KP, Oldstone MB. 2005. Posttranslational modification of alpha-dystroglycan, the cellular receptor for arenaviruses, by the glycosyltransferase LARGE is critical for virus binding. J Virol, 79: 14282–14296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N. 2005. ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res, 33: W299–W302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larson RA, Dai D, Hosack VT, Tan Y, Bolken TC, Hruby DE, Amberg SM. 2008. Identification of a broad-spectrum arenavirus entry inhibitor. J Virol, 82: 10768–10775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AM, Rojek JM, Spiropoulou CF, Gundersen AT, Jin W, Shaginian A, York J, Nunberg JH, Boger DL, Oldstone MB, Kunz S. 2008. Unique small molecule entry inhibitors of hemorrhagic fever arenaviruses. J Biol Chem, 283: 18734–18742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz O, ter Meulen J, Klenk HD, Seidah NG, Garten W. 2001. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc Natl Acad Sci U S A, 98: 12701–12705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung WC, Leung MF, Rawls WE. 1979. Distinctive RNA transcriptase, polyadenylic acid polymerase, and polyuridylic acid polymerase activities associated with Pichinde virus. J Virol, 30: 98–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Sun Z, Pryce R, Parsy ML, Fehling SK, Schlie K, Siebert CA, Garten W, Bowden TA, Strecker T, Huiskonen JT. 2016. Acidic pH-Induced Conformations and LAMP1 Binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog, 12: e1005418.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maiztegui JI, McKee KT, Jr., Barrera Oro JG, Harrison LH, Gibbs PH, Feuillade MR, Enria DA, Briggiler AM, Levis SC, Ambrosio AM, Halsey NA, Peters CJ. 1998. Protective efficacy of a live attenuated vaccine against Argentine hemorrhagic fever. AHF Study Group. J Infect Dis, 177: 277–283.

    Article  CAS  Google Scholar 

  • Martinez MG, Bialecki MA, Belouzard S, Cordo SM, Candurra NA, Whittaker GR. 2013. Utilization of human DC-SIGN and LSIGN for entry and infection of host cells by the New World arenavirus, Junin virus. Biochem Biophys Res Commun, 441: 612–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez MG, Cordo SM, Candurra NA. 2007. Characterization of Junin arenavirus cell entry. J Gen Virol, 88: 1776–1784.

    Article  CAS  PubMed  Google Scholar 

  • McCormick JB, King IJ, Webb PA, Scribner CL, Craven RB, Johnson KM, Elliott LH, Belmont-Williams R. 1986. Lassa fever. Effective therapy with ribavirin. N Engl J Med, 314: 20–26.

    CAS  PubMed  Google Scholar 

  • Messina EL, York J, Nunberg JH. 2012. Dissection of the role of the stable signal peptide of the arenavirus envelope glycoprotein in membrane fusion. J Virol, 86: 6138–6145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meulen J, Badusche M, Satoguina J, Strecker T, Lenz O, Loeliger C, Sakho M, Koulemou K, Koivogui L, Hoerauf A. 2004. Old and New World arenaviruses share a highly conserved epitope in the fusion domain of the glycoprotein 2, which is recognized by Lassa virus-specific human CD4+ T-cell clones. Virology, 321: 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Meyer BJ, de la Torre JC, Southern PJ. 2002. Arenaviruses: genomic RNAs, transcription, and replication. Curr Top Microbiol Immunol, 262: 139–157.

    CAS  PubMed  Google Scholar 

  • Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, Halper-Stromberg A, Gnanapragasam PN, Spencer DI, Seaman MS, Schuitemaker H, Feizi T, Nussenzweig MC, Bjorkman PJ. 2012. Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A, 109: E3268–3277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo N, Cubitt B, Iwasaki M, de la Torre JC. 2015. Identification and Mechanism of Action of a Novel Small-Molecule Inhibitor of Arenavirus Multiplication. J Virol, 89: 10924–10933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldstone MB. 2007. A suspenseful game of 'hide and seek' between virus and host. Nat Immunol, 8: 325–327.

    Article  CAS  PubMed  Google Scholar 

  • Parsy ML, Harlos K, Huiskonen JT, Bowden TA. 2013. Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. J Virol, 87: 13070–13075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasqual G, Rojek JM, Masin M, Chatton JY, Kunz S. 2011. Old world arenaviruses enter the host cell via the multivesicular body and depend on the endosomal sorting complex required for transport. PLoS Pathog, 7: e1002232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquato A, Burri DJ, Traba EG, Hanna- El-Daher L, Seidah NG, Kunz S. 2011. Arenavirus envelope glycoproteins mimic autoprocessing sites of the cellular proprotein convertase subtilisin kexin isozyme-1/site-1 protease. Virology, 417: 18–26.

    Article  CAS  PubMed  Google Scholar 

  • Pejchal R, Doores KJ, Walker LM, Khayat R, Huang PS, Wang SK, Stanfield RL, Julien JP, Ramos A, Crispin M, Depetris R, Katpally U, Marozsan A, Cupo A, Maloveste S, Liu Y, McBride R, Ito Y, Sanders RW, Ogohara C, Paulson JC, Feizi T, Scanlan CN, Wong CH, Moore JP, Olson WC, Ward AB, Poignard P, Schief WR, Burton DR, Wilson IA. 2011. A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science, 334: 1097–1103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez M, Craven RC, de la Torre JC. 2003. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. Proc Natl Acad Sci U S A, 100: 12978–12983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinschewer DD, Perez M, de la Torre JC. 2003. Role of the virus nucleoprotein in the regulation of lymphocytic choriomeningitis virus transcription and RNA replication. J Virol, 77: 3882–3887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pushko P, Geisbert J, Parker M, Jahrling P, Smith J. 2001. Individual and bivalent vaccines based on alphavirus replicons protect guinea pigs against infection with Lassa and Ebola viruses. J Virol, 75: 11677–11685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quirin K, Eschli B, Scheu I, Poort L, Kartenbeck J, Helenius A. 2008. Lymphocytic choriomeningitis virus uses a novel endocytic pathway for infectious entry via late endosomes. Virology, 378: 21–33.

    Article  CAS  PubMed  Google Scholar 

  • Radoshitzky SR, Abraham J, Spiropoulou CF, Kuhn JH, Nguyen D, Li W, Nagel J, Schmidt PJ, Nunberg JH, Andrews NC, Farzan M, Choe H. 2007. Transferrin receptor 1 is a cellular receptor for New World haemorrhagic fever arenaviruses. Nature, 446: 92–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radoshitzky SR, Bao Y, Buchmeier MJ, Charrel RN, Clawson AN, Clegg CS, De Risi JL, Emonet S, Gonzalez JP, Kuhn JH, Lukashevich IS, Peters CJ, Romanowski V, Salvato MS, Stenglein MD, de la Torre JC. 2015. Past, present, and future of arenavirus taxonomy. Arch Virol, 160: 1851–1874.

    Article  CAS  PubMed  Google Scholar 

  • Radoshitzky SR, Longobardi LE, Kuhn JH, Retterer C, Dong L, Clester JC, Kota K, Carra J, Bavari S. 2011. Machupo virus glycoprotein determinants for human transferrin receptor 1 binding and cell entry. PLoS One, 6: e21398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res, 42: W320–W324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson JE, Hastie KM, Cross RW, Yenni RE, Elliott DH, Rouelle JA, Kannadka CB, Smira AA, Garry CE, Bradley BT, Yu H, Shaffer JG, Boisen ML, Hartnett JN, Zandonatti MA, Rowland MM, Heinrich ML, Martinez-Sobrido L, Cheng B, de la Torre JC, Andersen KG, Goba A, Momoh M, Fullah M, Gbakie M, Kanneh L, Koroma VJ, Fonnie R, Jalloh SC, Kargbo B, Vandi MA, Gbetuwa M, Ikponmwosa O, Asogun DA, Okokhere PO, Follarin OA, Schieffelin JS, Pitts KR, Geisbert JB, Kulakoski PC, Wilson RB, Happi CT, Sabeti PC, Gevao SM, Khan SH, Grant DS, Geisbert TW, Saphire EO, Branco LM, Garry RF. 2016. Most neutralizing human monoclonal antibodies target novel epitopes requiring both Lassa virus glycoprotein subunits. Nat Commun, 7: 11544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojek JM, Campbell KP, Oldstone MB, Kunz S. 2007a. Old World arenavirus infection interferes with the expression of functional alpha-dystroglycan in the host cell. Mol Biol Cell, 18: 4493–4507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojek JM, Kunz S. 2008. Cell entry by human pathogenic arenaviruses. Cell Microbiol, 10: 828–835.

    Article  CAS  PubMed  Google Scholar 

  • Rojek JM, Lee AM, Nguyen N, Spiropoulou CF, Kunz S. 2008a. Site 1 protease is required for proteolytic processing of the glycoproteins of the South American hemorrhagic fever viruses Junin, Machupo, and Guanarito. J Virol, 82: 6045–6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojek JM, Sanchez AB, Nguyen NT, de la Torre JC, Kunz S. 2008b. Different mechanisms of cell entry by human-pathogenic Old World and New World arenaviruses. J Virol, 82: 7677–7687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rojek JM, Spiropoulou CF, Campbell KP, Kunz S. 2007b. Old World and clade C New World arenaviruses mimic the molecular mechanism of receptor recognition used by alpha-dystroglycan's host-derived ligands. J Virol, 81: 5685–5695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvato MS, Clegg JCS, Buchmeier MJ, Charrel RN, Gonzalez JP, Lukashevich IS, Peters CJ, Rico-Hesse R, Romanowski V. 2005. Family Arenaviridae. In: Virus Taxonomy, Eighth report of the International Committee on Taxonomy of Viruses. Van Regenmortel MHV, Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (Eds.). Cambridge: Academic Press.

    Google Scholar 

  • Salvato MS, Schweighofer KJ, Burns J, Shimomaye EM. 1992. Biochemical and immunological evidence that the 11 kDa zinc-binding protein of lymphocytic choriomeningitis virus is a structural component of the virus. Virus Res, 22: 185–198.

    Article  CAS  PubMed  Google Scholar 

  • Salvato MS, Shimomaye EM. 1989. The completed sequence of lymphocytic choriomeningitis virus reveals a unique RNA structure and a gene for a zinc finger protein. Virology, 173: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Saunders AA, Ting JP, Meisner J, Neuman BW, Perez M, de la Torre JC, Buchmeier MJ. 2007. Mapping the landscape of the lymphocytic choriomeningitis virus stable signal peptide reveals novel functional domains. J Virol, 81: 5649–5657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt AP, Leser GP, Morita E, Sundquist WI, Lamb RA. 2005. Evidence for a new viral late-domain core sequence, FPIV, necessary for budding of a paramyxovirus. J Virol, 79: 2988–2997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrempf S, Froeschke M, Giroglou T, von Laer D, Dobberstein B. 2007. Signal peptide requirements for lymphocytic choriomeningitis virus glycoprotein C maturation and virus infectivity. J Virol, 81: 12515–12524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz F, Aebi M. 2011. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol, 21: 576–582.

    Article  CAS  PubMed  Google Scholar 

  • Seregin AV, Yun NE, Miller M, Aronson J, Smith JK, Walker AG, Smith JN, Huang C, Manning JT, de la Torre JC, Paessler S. 2015. The glycoprotein precursor gene of Junin virus determines the virulence of the Romero strain and the attenuation of the Candid #1 strain in a representative animal model of Argentine hemorrhagic fever. J Virol, 89: 5949–5956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimojima M, Kawaoka Y. 2012. Cell Surface Molecules Involved in Infection Mediated by Lymphocytic Choriomeningitis Virus Glycoprotein. J Vet Med Sci, 74: 1363–1366.

    Article  PubMed  Google Scholar 

  • Shimojima M, Stroher U, Ebihara H, Feldmann H, Kawaoka Y. 2012. Identification of cell surface molecules involved in dystroglycan-independent Lassa virus cell entry. J Virol, 86: 2067–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sommerstein R, Flatz L, Remy MM, Malinge P, Magistrelli G, Fischer N, Sahin M, Bergthaler A, Igonet S, Ter Meulen J, Rigo D, Meda P, Rabah N, Coutard B, Bowden TA, Lambert PH, Siegrist CA, Pinschewer DD. 2015. Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection. PLoS Pathog, 11: e1005276.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spence JS, Melnik LI, Badani H, Wimley WC, Garry RF. 2014. Inhibition of arenavirus infection by a glycoprotein-derived peptide with a novel mechanism. J Virol, 88: 8556–8564.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strecker T, Eichler R, Meulen J, Weissenhorn W, Dieter Klenk H, Garten W, Lenz O. 2003. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles [corrected]. J Virol, 77: 10700–10705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tani H, Iha K, Shimojima M, Fukushi S, Taniguchi S, Yoshikawa T, Kawaoka Y, Nakasone N, Ninomiya H, Saijo M, Morikawa S. 2014. Analysis of Lujo virus cell entry using pseudotype vesicular stomatitis virus. J Virol, 88: 7317–7330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • ter Meulen J, Badusche M, Kuhnt K, Doetze A, Satoguina J, Marti T, Loeliger C, Koulemou K, Koivogui L, Schmitz H, Fleischer B, Hoerauf A. 2000. Characterization of human CD4(+) T-cell clones recognizing conserved and variable epitopes of the Lassa virus nucleoprotein. J Virol, 74: 2186–2192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vela EM, Zhang L, Colpitts TM, Davey RA, Aronson JF. 2007. Arenavirus entry occurs through a cholesterol-dependent, non-caveolar, clathrin-mediated endocytic mechanism. Virology, 369: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walker LM, Huber M, Doores KJ, Falkowska E, Pejchal R, Julien JP, Wang SK, Ramos A, Chan-Hui PY, Moyle M, Mitcham JL, Hammond PW, Olsen OA, Phung P, Fling S, Wong CH, Phogat S, Wrin T, Simek MD, Protocol GPI, Koff WC, Wilson IA, Burton DR, Poignard P. 2011. Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature, 477: 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber EL, Buchmeier MJ. 1988. Fine mapping of a peptide sequence containing an antigenic site conserved among arenaviruses. Virology, 164: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Wright KE, Salvato MS, Buchmeier MJ. 1989. Neutralizing epitopes of lymphocytic choriomeningitis virus are conformational and require both glycosylation and disulfide bonds for expression. Virology, 171: 417–426.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kato Y, Karita M, Kawaguchi M, Shibata N, Kobayashi M. 2004. Expression of genes related to muscular dystrophy with lissencephaly. Pediatr Neurol, 31: 183–190.

    Article  PubMed  Google Scholar 

  • York J, Agnihothram SS, Romanowski V, Nunberg JH. 2005. Genetic analysis of heptad-repeat regions in the G2 fusion subunit of the Junin arenavirus envelope glycoprotein. Virology, 343: 267–274.

    Article  CAS  PubMed  Google Scholar 

  • York J, Dai D, Amberg SM, Nunberg JH. 2008. pH-induced activation of arenavirus membrane fusion is antagonized by small-molecule inhibitors. J Virol, 82: 10932–10939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Nunberg JH. 2006. Role of the stable signal peptide of Junin arenavirus envelope glycoprotein in pH-dependent membrane fusion. J Virol, 80: 7775–7780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Nunberg JH. 2007a. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein. Virology, 359: 72–81.

    Article  CAS  PubMed  Google Scholar 

  • York J, Nunberg JH. 2007b. A novel zinc-binding domain is essential for formation of the functional Junin virus envelope glycoprotein complex. J Virol, 81: 13385–13391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Nunberg JH. 2009. Intersubunit interactions modulate pHinduced activation of membrane fusion by the Junin virus envelope glycoprotein GPC. J Virol, 83: 4121–4126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York J, Romanowski V, Lu M, Nunberg JH. 2004. The signal peptide of the Junin arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol, 78: 10783–10792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young PR, Howard CR. 1983. Fine structure analysis of Pichinde virus nucleocapsids. J Gen Virol, 64: 833–842.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China

    Wei Wang, Zheng Zhou, Leike Zhang, Shaobo Wang & Gengfu Xiao

Authors
  1. Wei Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Zheng Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Leike Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Shaobo Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Gengfu Xiao
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Wei Wang.

Additional information

ORCID: 0000-0002-8696-9773

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhou, Z., Zhang, L. et al. Structure-function relationship of the mammarenavirus envelope glycoprotein. Virol. Sin. 31, 380–394 (2016). https://doi.org/10.1007/s12250-016-3815-4

Download citation

  • Received: 20 May 2016

  • Accepted: 27 June 2016

  • Published: 04 August 2016

  • Issue Date: October 2016

  • DOI: https://doi.org/10.1007/s12250-016-3815-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Mammarenaviruses
  • glycoprotein complex (GPC)
  • stable signal peptide (SSP)
  • membrane fusion
  • glycosylation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.152.207

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.