Virologica Sinica

, Volume 31, Issue 5, pp 425–436 | Cite as

De novo transcriptome analysis of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) genes in latently infected Se301 cells

Research Article


Cells of the P8-Se301-C1 strain are Spodoptera exigua cell clones that each harbor a partial version of the S. exigua multiple nucleopolyhedrovirus (SeMNPV) genome and which are resistant to homologous SeMNPV infections. The cells produce no viral progeny, suggesting that the infection is a latent-like viral infection. To investigate the SeMNPV genes harbored in the P8-Se301-C1 cells, the de novo transcriptomes of P8-Se301-C1 cells and S. exigua Se301 cells were analyzed and compared. A total of 54,569,296 reads were obtained from the P8-Se301-C1 cells that yielded 112,565 final unigenes with a mean length of 1,093 nt. A total of 56,865,504 reads were obtained from the Se301 cells that yielded 102,996 final unigenes with a mean length of 1,082 nt. Ten SeMNPV gene transcripts (se5, se7, se8, se12, se43, se45, se89, se90, se124, and se126) were detected in the P8-Se301-C1 cells by RNA-Seq but not in the Se301 cells, which was verified by RTPCR. 5′/3′ RACE analyses showed that the 3′- or 5′-end sequences of the viral transcripts are aligned to the host gene sequences in P8-Se301-C1 cells, suggesting that the SeMNPV genes may integrate into and be transcribed with the host genes in the P8-Se301-C1 cells. Furthermore, six additional viral gene transcripts, se11, se42, se44, se88, se91, and se127 (incorporated into chimeric fusion transcripts in the P8-Se301-C1 cells), were detected in the RACE analyses. Taken together, sixteen SeMNPV transcripts were identified in the P8-Se301-C1 cell strain. This study provides information to develop the understanding of baculovirus latent infections and superinfection exclusion.


RNA-Seq SeMNPV baculovirus latent infection Spodoptera exigua 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12250_2016_3791_MOESM1_ESM.pdf (3.1 mb)
De novo transcriptome analysis of Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) genes in latently infected Se301 cells


  1. Bonilla GR, Roberts LR. 2005. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol, 42: 760–777.CrossRefGoogle Scholar
  2. Cai Y, Long Z, Qiu J, Yuan M, Li G, Yang K. 2012. An ac34 deletion mutant of Autographa californica nucleopolyhedrovirus exhibits delayed late gene expression and a lack of virulence in vivo. J Virol, 86: 10432–10443.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chao YC, Wood HA, Chang CY, Lee HJ, Shen WC, Lee HT. 1992. Differential expression of Hz-1 baculovirus genes during productive and persistent viral infections. J Virol, 66: 1442–1448.PubMedPubMedCentralGoogle Scholar
  4. Chen B, Zhang YJ, He Z, Li W, Si F, Tang Y, He Q, Qiao L, Yan Z, Fu W, Che Y. 2014. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae). Parasit Vectors, 7: 314.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Choi JY, Roh JY, Wang Y, Zhen Z, Tao XY, Lee JH, Liu Q, Kim JS, Shin SW, Je YH. 2012. Analysis of genes expression of Spodoptera exigua larvae upon AcMNPV infection. PLoS One, 7: e42462.CrossRefPubMedPubMedCentralGoogle Scholar
  6. de Jong J, Arif BM, Theilmann DA, Krell PJ. 2009. Autographa californica multiple nucleopolyhedrovirus me53 (ac140) is a nonessential gene required for efficient budded-virus production. J Virol, 83: 7440–7448.CrossRefPubMedPubMedCentralGoogle Scholar
  7. He W, You M, Vasseur L, Yang G, Xie M, Cui K, Bai J, Liu C, Li X, Xu X, Huang S. 2012. Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella. Genomics, 99: 169–177.CrossRefPubMedGoogle Scholar
  8. IJkel W, van Strien EA, Heldens JG, Broer R, Zuidema D, Goldbach RW, Vlak JM. 1999. Sequence and organization of the Spodoptera exigua multicapsid nucleopolyhedrovirus genome. J Gen Virol, 80: 3289–3304.CrossRefPubMedGoogle Scholar
  9. Lambirth KC, Whaley AM, Blakley IC, Schlueter JA, Bost KL, Loraine AE, Piller KJ. 2015. A Comparison of transgenic and wild type soybean seeds: analysis of transcriptome profiles using RNA-Seq. BMC Biotechnol, 15: 89.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lee SS, Lehman IR. 1999. The interaction of herpes simplex type 1 virus origin-binding protein (UL9 protein) with Box I, the high affinity element of the viral origin of DNA replication. J Biol Chem, 274: 18613–18617.CrossRefPubMedGoogle Scholar
  11. Li L, Harwood SH, Rohrmann GF. 1999. Identification of additional genes that influence baculovirus late gene expression. Virology, 255: 9–19.CrossRefPubMedGoogle Scholar
  12. Li H, Jiang W, Zhang Z, Xing Y, Li F. 2013. Transcriptome Analysis and Screening for Potential Target Genes for RNAi-Mediated Pest Control of the Beet Armyworm, Spodoptera exigua. PLoS One, 8: e65931.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Lin G, Blissard GW. 2002. Analysis of an Autographa californica multicapsid nucleopolyhedrovirus lef-6-null virus: LEF-6 is not essential for viral replication but appears to accelerate late gene transcription. J Virol, 76: 5503–5514.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Liu H, Wu W, Hou K, Chen J, Zhao Z. 2016. Deep sequencing reveals transcriptome re-programming of Polygonum multiflorum thunb. roots to the elicitation with methyl jasmonate. Mol Genet Genomics, 291: 337–348.CrossRefPubMedGoogle Scholar
  15. Mikhailov VS, Mikhailova AL, Iwanaga M, Gomi S, Maeda S. 1998. Bombyx mori nucleopolyhedrovirus encodes a DNAbinding protein capable of destabilizing duplex DNA. J Virol, 72: 3107–3116.PubMedPubMedCentralGoogle Scholar
  16. Minami M, Daimon Y, Mori K, Takashima H, Nakajima T, Itoh Y, Okanoue T. 2005. Hepatitis B virus-related insertional mutagenesis in chronic hepatitis B patients as an early drastic genetic change leading to hepatocarcinogenesis. Oncogene, 24: 4340–4348.CrossRefPubMedGoogle Scholar
  17. Murillo R, Hussey MS, Possee RD. 2011. Evidence for covert baculovirus infections in a Spodoptera exigua laboratory culture. J Gen Virol, 92: 1061–1070.CrossRefPubMedGoogle Scholar
  18. Perng GC, Chokephaibulkit K, Thompson RL, Sawtell NM, Slanina SM, Ghiasi H, Nesburn AB, Wechsler SL. 1996. The region of the herpes simplex virus type 1 LAT gene that is colinear with the ICP34.5 gene is not involved in spontaneous reactivation. J Virol, 70: 282–291.PubMedPubMedCentralGoogle Scholar
  19. Qiu L, Hou L, Zhang B, Liu L, Li B, Deng P, Ma W, Wang X, Fabrick JA, Chen L, Lei C. 2015. Cadherin is involved in the action of Bacillus thuringiensis toxins Cry1Ac and Cry2Aa in the beet armyworm, Spodoptera exigua. J Invertebr Pathol, 127: 47–53.CrossRefPubMedGoogle Scholar
  20. Saffert RT, Kalejta RF. 2007. Human cytomegalovirus gene expression is silenced by Daxx-mediated intrinsic immune defense in model latent infections established in vitro. J Virol, 81: 9109–9120.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Slavokhotova AA, Shelenkov AA, Odintsova TI. 2015. Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. Plant Mol Biol, 89: 203–214.CrossRefPubMedGoogle Scholar
  22. Sriram S, Gopinathan KP. 1998. The potential role of a late gene expression factor, lef2, from Bombyx mori nuclear polyhedrosis virus in very late gene transcription and DNA replication. Virology, 251: 108–122.CrossRefPubMedGoogle Scholar
  23. Sun L, Qiu G, Cui L, Ma C, Yuan H. 2015. Molecular characterization of a ryanodine receptor gene from Spodoptera exigua and its upregulation by chlorantraniliprole. Pestic Biochem Physiol, 123: 56–63.CrossRefPubMedGoogle Scholar
  24. Tamori A, Yamanishi Y, Kawashima S, Kanehisa M, Enomoto M, Tanaka H, Kubo S, Shiomi S, Nishiguchi S. 2005. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res, 11: 5821–5826.CrossRefPubMedGoogle Scholar
  25. Tao X, Gu YH, Wang HY, Zheng W, Li X, Zhao CW, Zhang YZ. 2012. Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam]. PLoS One, 7: e36234.CrossRefPubMedPubMedCentralGoogle Scholar
  26. The UniProt Consortiums. 2011. Ongoing and future developments at the Universal Protein Resource. Nucleic Acids Res, 39: D214–219.CrossRefGoogle Scholar
  27. Thompson RL, Sawtell NM. 1997. The herpes simplex virus type 1 latency-associated transcript gene regulates the establishment of latency. J Virol, 71: 5432–5440.PubMedPubMedCentralGoogle Scholar
  28. Virto C, Navarro D, Tellez MM, Herrero S, Williams T, Murillo R, Caballero P. 2014. Natural populations of Spodoptera exigua are infected by multiple viruses that are transmitted to their offspring. J Invertebr Pathol, 122: 22–27.CrossRefPubMedGoogle Scholar
  29. Vogel H, Badapanda C, Knorr E, Vilcinskas A. 2014. RNA-sequencing analysis reveals abundant developmental stage-specific and immunity-related genes in the pollen beetle Meligethes aeneus. Insect Mol Biol, 23: 98–112.CrossRefPubMedGoogle Scholar
  30. Wang Y, Wu W, Li Z, Yuan M, Feng G, Yu Q, Yang K, Pang Y. 2007. ac18 is not essential for the propagation of Autographa californica multiple nucleopolyhedrovirus. Virology, 367: 71–81.CrossRefPubMedGoogle Scholar
  31. Weng Q, Yang K, Xiao W, Yuan M, Zhang W, Pang Y. 2009. Establishment of an insect cell clone that harbours a partial baculoviral genome and is resistant to homologous virus infection. J Gen Virol, 90: 2871–2876.CrossRefPubMedGoogle Scholar
  32. Westenberg M, Uijtdewilligen P, Vlak JM. 2007. Baculovirus envelope fusion proteins F and GP64 exploit distinct receptors to gain entry into cultured insect cells. J Gen Virol, 88: 3302–3306.CrossRefPubMedGoogle Scholar
  33. Xiao CL, Mai ZB, Lian XL, Zhong J, Jin JJ, He QY, G. Z. 2014. FANSe2: a robust and cost-efficient alignment tool for quantitative next-generation sequencing applications, p. e94250, PLoS One, vol. 9.Google Scholar
  34. Xu K, Sun F, Chai G, Wang Y, Shi L, Liu S, Xi Y. 2015. De novo assembly and transcriptome analysis of two contrary tillering mutants to learn the mechanisms of tillers outgrowth in switchgrass (Panicum virgatum L.). Front Plant Sci, 6: 749.PubMedPubMedCentralGoogle Scholar
  35. Xu HJ, Yang ZN, Zhao JF, Tian CH, Ge JQ, Tang XD, Bao YY, Zhang CX. 2008. Bombyx mori nucleopolyhedrovirus ORF56 encodes an occlusion-derived virus protein and is not essential for budded virus production. J Gen Virol, 89: 1212–1219.CrossRefPubMedGoogle Scholar
  36. Yang Y, Smith. SA. 2013. Optimizing de novo assembly of shortread RNA-seq data for phylogenomics. BioMed Central, 14: 328.Google Scholar
  37. Yu M, Carstens EB. 2012. Choristoneura fumiferana multiple nucleopolyhedrovirus LEF-3-P143 complex can complement DNA replication and budded virus in an AcMNPV LEF-3-P143 double knockout bacmid. J Gen Virol, 93: 383–388.CrossRefPubMedGoogle Scholar
  38. Zhang G, Fedyunin I, Kirchner S, Xiao C, Valleriani A, Ignatova Z. 2012. FANSe: an accurate algorithm for quantitative mapping of large scale sequencing reads. Nucleic Acids Res, 40: e83.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zhao YJ, Zeng Y, Chen L, Dong Y, Wang W. 2014. Analysis of transcriptomes of three orb-web spider species reveals gene profiles involved in silk and toxin. Insect Sci, 21: 687–698.CrossRefPubMedGoogle Scholar
  40. Zheng XL, Wang P, Cheng WJ, Wang XP, Lei CL. 2012. Projecting overwintering regions of the beet armyworm, Spodoptera exigua in China using the CLIMEX model. J Insect Sci, 12: 13.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.School of Life SciencesGuizhou Normal UniversityGuiyangChina

Personalised recommendations