Virologica Sinica

, Volume 31, Issue 4, pp 279–287 | Cite as

Virus like particle-based vaccines against emerging infectious disease viruses

  • Jinliang Liu
  • Shiyu Dai
  • Manli Wang
  • Zhihong Hu
  • Hualin Wang
  • Fei Deng
Review

Abstract

Emerging infectious diseases are major threats to human health. Most severe viral disease outbreaks occur in developing regions where health conditions are poor. With increased international travel and business, the possibility of eventually transmitting infectious viruses between different countries is increasing. The most effective approach in preventing viral diseases is vaccination. However, vaccines are not currently available for numerous viral diseases. Virus-like particles (VLPs) are engineered vaccine candidates that have been studied for decades. VLPs are constructed by viral protein expression in various expression systems that promote the selfassembly of proteins into structures resembling virus particles. VLPs have antigenicity similar to that of the native virus, but are non-infectious as they lack key viral genetic material. VLP vaccines have attracted considerable research interest because they offer several advantages over traditional vaccines. Studies have shown that VLP vaccines can stimulate both humoral and cellular immune responses, which may offer effective antiviral protection. Here we review recent developments with VLP-based vaccines for several highly virulent emerging or re-emerging infectious diseases. The infectious agents discussed include RNA viruses from different virus families, such as the Arenaviridae, Bunyaviridae, Caliciviridae, Coronaviridae, Filoviridae, Flaviviridae, Orthomyxoviridae, Paramyxoviridae, and Togaviridae families.

Keywords

emerging infectious disease self-assembly vaccine virus virus-like particle (VLP) 

References

  1. Acuna R, Cifuentes-Munoz N, Marquez CL, Bulling M, Klingstrom J, Mancini R, Lozach PY, Tischler ND. 2014. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles. J Virol, 88: 2344–2348.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S, Nabel GJ. 2010. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med, 16: 334–338.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Atmar RL, Bernstein DI, Harro CD, Al-Ibrahim MS, Chen WH, Ferreira J, Estes MK, Graham DY, Opekun AR, Richardson C, Mendelman PM. 2011. Norovirus Vaccine against Experimental Human Norwalk Virus Illness. New Engl J Med, 365: 2178–2187.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bai B, Hu Q, Hu H, Zhou P, Shi Z, Meng J, Lu B, Huang Y, Mao P, Wang H. 2008. Virus-like particles of SARS-like coronavir-us formed by membrane proteins from different origins demon-strate stimulating activity in human dendritic cells. PLoS One, 3: e2685.CrossRefGoogle Scholar
  5. Baize S, Pannetier D, Oestereich L, Rieger T, Koivogui L, Magassouba N, Soropogui B, Sow MS, Keita S, de Clerck H, Tiffany A, Dominguez G, Loua M, Traore A, Kolie M, Malano ER, Heleze E, Bocquin A, Mely S, Raoul H, Caro V, Cadar D, Gabriel M, Pahlmann M, Tappe D, Schmidt-Chanasit J, Impouma B, Diallo AK, Formenty P, van Herp M, Gunther S. 2014. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med, 371: 1418–1425.CrossRefPubMedGoogle Scholar
  6. Ball JM, Estes MK, Hardy ME, Conner ME, Opekun AR, Graham DY. 1996. Recombinant Norwalk virus-like particles as an oral vaccine. Arch Virol, Suppl 12: 243–249.Google Scholar
  7. Ball JM, Hardy ME, Atmar RL, Conner ME, Estes MK. 1998. Oral immunization with recombinant Norwalk virus-like particles induces a systemic and mucosal immune response in mice. J Virol, 72: 1345–1353.PubMedPubMedCentralGoogle Scholar
  8. Branco LM, Grove JN, Geske FJ, Boisen ML, Muncy IJ, Magliato SA, Henderson LA, Schoepp RJ, Cashman KA, Hensley LE, Garry RF. 2010. Lassa virus-like particles displaying all major immunological determinants as a vaccine candidate for Lassa hemorrhagic fever. Virol J, 7: 279.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bright RA, Carter DM, Crevar CJ, Toapanta FR, Steckbeck JD, Cole KS, Kumar NM, Pushko P, Smith G, Tumpey TM, Ross TM. 2008. Cross-clade protective immune responses to influenza viruses with H5N1 HA and NA elicited by an influenza virus-like particle. PLoS One, 3: e1501.CrossRefGoogle Scholar
  10. Buonaguro L, Tagliamonte M, Tornesello ML, Buonaguro FM. 2011. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev Vaccines, 10: 1569–1583.CrossRefPubMedGoogle Scholar
  11. Buonaguro L, Visciano ML, Tornesello ML, Tagliamonte M, Biryahwaho B, Buonaguro FM. 2005. Induction of systemic and mucosal cross-clade neutralizing antibodies in BALB/c mice immunized with human immunodeficiency virus type 1 clade A virus -like particles administered by different routes of inoculation. J Virol, 79: 7059–7067.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chackerian B, Lenz P, Lowy DR, Schiller JT. 2002. Determinants of autoantibody induction by conjugated papillomavirus virus-like particles. J Immunol, 169: 6120–6126.CrossRefPubMedGoogle Scholar
  13. Cox RG, Erickson JJ, Hastings AK, Becker JC, Johnson M, Craven RE, Tollefson SJ, Boyd KL, Williams JV. 2014. Human metapneumovirus virus-like particles induce protective B and T cell responses in a mouse model. J Virol, 88: 6368–6379.CrossRefPubMedPubMedCentralGoogle Scholar
  14. D’Aoust MA, Couture MM, Charland N, Trepanier S, Landry N, Ors F, Vezina LP. 2010. The production of hemagglutinin-based virus-like particles in plants: a rapid, efficient and safe response to pandemic influenza. Plant Biotechnol J, 8: 607–619.CrossRefPubMedGoogle Scholar
  15. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RAM, Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LLM, Snijder EJ, Stephens GM, Woo PCY, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. J Virol, 87: 7790–7792.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Du R, Yin F, Wang M, Hu Z, Wang H, Deng F. 2015. Glycoprotein E of the Japanese encephalitis virus forms virus-like particles and induces syncytia when expressed by a baculovirus. J Gen Virol, 96: 1006–1014.CrossRefPubMedGoogle Scholar
  17. El-Kamary SS, Pasetti MF, Mendelman PM, Frey SE, Bernstein DI, Treanor JJ, Ferreira J, Chen WH, Sublett R, Richardson C, Bargatze RF, Sztein MB, Tacket CO. 2010. Adjuvanted Intranasal Norwalk Virus-Like Particle Vaccine Elicits Antibodies and Antibody- Secreting Cells That Express Homing Receptors for Mucosal and Peripheral Lymphoid Tissues. J Infect Dis, 202: 1649–1658.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Garcia-Sastre A, Mena I. 2013. Novel vaccine strategies against emerging viruses. Curr Opin Virol, 3: 210–216.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Harrington PR, Yount B, Johnston RE, Davis N, Moe C, Baric RS. 2002. Systemic, mucosal, and heterotypic immune induction in mice inoculated with Venezuelan equine encephalitis replicons expressing Norwalk virus-like particles. J Virol, 76: 730–742.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harrison MS, Sakaguchi T, Schmitt AP. 2010. Paramyxovirus assembly and budding: building particles that transmit infections. Int J Biochem Cell Biol, 42: 1416–1429.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Herbst-Kralovetz M, Mason HS, Chen Q. 2010. Norwalk virus-like particles as vaccines. Expert Rev Vaccines, 9: 299–307.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Holmes DA, Purdy DE, Chao DY, Noga AJ, Chang GJ. 2005. Comparative analysis of immunoglobulin M (IgM) capture enzymelinked immunosorbent assay using virus-like particles or virusinfected mouse brain antigens to detect IgM antibody in sera from patients with evident flaviviral infections. J Clin Microbiol, 43: 3227–3236.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kang SM, Song JM, Quan FS, Compans RW. 2009. Influenza vaccines based on virus-like particles. Virus Res, 143: 140–146.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Khurana S, Wu J, Verma N, Verma S, Raghunandan R, Manischewitz J, King LR, Kpamegan E, Pincus S, Smith G, Glenn G, Golding H. 2011. H5N1 virus-like particle vaccine elicits crossreactive neutralizing antibodies that preferentially bind to the oligomeric form of influenza virus hemagglutinin in humans. J Virol, 85: 10945–10954.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kong D, Wen Z, Su H, Ge J, Chen W, Wang X, Wu C, Yang C, Chen H, Bu Z. 2012. Newcastle disease virus-vectored Nipah encephalitis vaccines induce B and T cell responses in mice and long-lasting neutralizing antibodies in pigs. Virology, 432: 327–335.CrossRefPubMedGoogle Scholar
  26. L’Vov D K, Al’khovskii SV, Shchelkanov M, Shchetinin AM, Deriabin PG, Aristova VA, Gitel’man AK, Samokhvalov EI, Botikov AG. 2014. Taxonomic status of the Tyulek virus (TLKV) (Orthomyxoviridae, Quaranjavirus, Quaranfil group) isolated from the ticks Argas vulgaris Filippova, 1961 (Argasidae) from the birds burrow nest biotopes in the Kyrgyzstan. Vopr Virusol, 59: 28–32. (In Russian)Google Scholar
  27. López-Macías C, Ferat-Osorio E, Tenorio-Calvo A, Isibasi A, Talavera J, Arteaga-Ruiz O, Arriaga-Pizano L, Hickman SP, Allende M, Lenhard K, Pincus S, Connolly K, Raghunandan R, Smith G, Glenn G. 2011. Safety and immunogenicity of a viruslike particle pandemic influenza A (H1N1) 2009 vaccine in a blinded, randomized, placebo-controlled trial of adults in Mexico. Vaccine, 29: 7826–7834.CrossRefPubMedGoogle Scholar
  28. Landry N, Ward BJ, Trépanier S, Montomoli E, Dargis M, Lapini G, Vézina L-P. 2010. Preclinical and Clinical Development of Plant-Made Virus-Like Particle Vaccine against Avian H5N1 Influenza. PLoS One, 5: e15559.CrossRefGoogle Scholar
  29. Li C, Liu F, Liang M, Zhang Q, Wang X, Wang T, Li J, Li D. 2010. Hantavirus-like particles generated in CHO cells induce specific immune responses in C57BL/6 mice. Vaccine, 28: 4294–4300.CrossRefPubMedGoogle Scholar
  30. Lindesmith LC, Ferris MT, Mullan CW, Ferreira J, Debbink K, Swanstrom J, Richardson C, Goodwin RR, Baehner F, Mendelman PM, Bargatze RF, Baric RS. 2015. Broad Blockade Antibody Responses in Human Volunteers after Immunization with a Multivalent Norovirus VLP Candidate Vaccine: Immunological Analyses from a Phase I Clinical Trial. PLoS Med, 12: 32.CrossRefGoogle Scholar
  31. Liu Y, Zhou J, Yu Z, Fang D, Fu C, Zhu X, He Z, Yan H, Jiang L. 2014. Tetravalent recombinant dengue virus-like particles as potential vaccine candidates: immunological properties. BMC Microbiol, 14: 233.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Lu B, Huang Y, Huang L, Li B, Zheng Z, Chen Z, Chen J, Hu Q, Wang H. 2010. Effect of mucosal and systemic immunization with virus-like particles of severe acute respiratory syndrome coronavirus in mice. Immunology, 130: 254–261.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mandell RB, Koukuntla R, Mogler LJ, Carzoli AK, Freiberg AN, Holbrook MR, Martin BK, Staplin WR, Vahanian NN, Link CJ, Flick R. 2010. A replication-incompetent Rift Valley fever vaccine: chimeric virus-like particles protect mice and rats against lethal challenge. Virology, 397: 187–198.CrossRefPubMedGoogle Scholar
  34. Mani S, Tripathi L, Raut R, Tyagi P, Arora U, Barman T, Sood R, Galav A, Wahala W, de Silva A, Swaminathan S, Khanna N. 2013. Pichia pastoris-expressed dengue 2 envelope forms viruslike particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One, 8: e64595.CrossRefGoogle Scholar
  35. McGinnes LW, Gravel KA, Finberg RW, Kurt-Jones EA, Massare MJ, Smith G, Schmidt MR, Morrison TG. 2011. Assembly and immunological properties of Newcastle disease virus-like particles containing the respiratory syncytial virus F and G proteins. J Virol, 85: 366–377.CrossRefPubMedGoogle Scholar
  36. Metz SW, Gardner J, Geertsema C, Le TT, Goh L, Vlak JM, Suhrbier A, Pijlman GP. 2013. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl Trop Dis, 7: e2124.CrossRefGoogle Scholar
  37. Moore MD, Goulter RM, Jaykus LA. 2015. Human norovirus as a foodborne pathogen: challenges and developments. Annu Rev Food Sci Technol, 6: 411–433.CrossRefPubMedGoogle Scholar
  38. Mortola E, Roy P. 2004. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett, 576: 174–178.CrossRefPubMedGoogle Scholar
  39. Noranate N, Takeda N, Chetanachan P, Sittisaman P, A AN, Anantapreecha S. 2014. Characterization of chikungunya viruslike particles. PLoS One, 9: e108169.CrossRefGoogle Scholar
  40. Oldstone MBA. 2002. Arenaviruses I -The epidemiology, molecular and cell biology of arenaviruses -Preface. Arenaviruses I, 262: V–Xii.Google Scholar
  41. Overby AK, Popov V, Neve EP, Pettersson RF. 2006. Generation and analysis of infectious virus-like particles of uukuniemi virus (bunyaviridae): a useful system for studying bunyaviral packaging and budding. J Virol, 80: 10428–10435.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Patel MM, Hall AJ, Vinje J, Parashara UD. 2009. Noroviruses: A comprehensive review. J Clin Virol, 44: 1–8.CrossRefPubMedGoogle Scholar
  43. Purdy DE, Chang GJ. 2005. Secretion of noninfectious dengue viruslike particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology, 333: 239–250.CrossRefPubMedGoogle Scholar
  44. Quan FS, Huang C, Compans RW, Kang SM. 2007. Virus-like particle vaccine induces protective immunity against homologous and heterologous strains of influenza virus. J Virol, 81: 3514–3524.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Quan FS, Kim Y, Lee S, Yi H, Kang SM, Bozja J, Moore ML, Compans RW. 2011. Viruslike particle vaccine induces protection against respiratory syncytial virus infection in mice. J Infect Dis, 204: 987–995.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ramani S, Atmar RL, Estes MK. 2014. Epidemiology of human noroviruses and updates on vaccine development. Curr Opin Gastroenterol, 30: 25–33.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rodriguez-Limas WA, Sekar K, Tyo KE. 2013. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotechnol, 24: 1089–1093.CrossRefPubMedGoogle Scholar
  48. Roldão A, Mellado MCM, Castilho LR, Carrondo MJT, Alves PM. 2010. Virus-like particles in vaccine development. Expert Rev Vaccines, 9: 1149–1176.CrossRefPubMedGoogle Scholar
  49. Schmeisser F, Adamo JE, Blumberg B, Friedman R, Muller J, Soto J, Weir JP. 2012. Production and characterization of mammalian virus-like particles from modified vaccinia virus Ankara vectors expressing influenza H5N1 hemagglutinin and neuraminidase. Vaccine, 30: 3413–3422.CrossRefPubMedGoogle Scholar
  50. Schweitzer BK, Chapman NM, Iwen PC. 2009. Overview of the Flaviviridae With an Emphasis on the Japanese Encephalitis Group Viruses. Lab Medicine, 40: 493–499.CrossRefGoogle Scholar
  51. Scotti N, Rybicki EP. 2013. Virus-like particles produced in plants as potential vaccines. Expert Rev Vaccines, 12: 211–224.CrossRefPubMedGoogle Scholar
  52. Singh G, Kumar A, Singh K, Kaur J. 2015. Ebola virus: an introduction and its pathology. Rev Med Virol. doi: 10.1002/rmv.1863.Google Scholar
  53. Staples JE, Breiman RF, Powers AM. 2009. Chikungunya fever: an epidemiological review of a re-emerging infectious disease. Clin Infect Dis, 49: 942–948.CrossRefPubMedGoogle Scholar
  54. Strecker T, Eichler R, Meulen Jt, Weissenhorn W, Dieter Klenk H, Garten W, Lenz O. 2003. Lassa virus Z protein is a matrix protein sufficient for the release of virus-like particles. J Virol, 77: 10700–10705.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Swayne DE, Suarez DL. 2000. Highly pathogenic avian influenza. Rev Sci Tech, 19: 463–482.PubMedGoogle Scholar
  56. Swenson DL, Warfield KL, Kuehl K, Larsen T, Hevey MC, Schmaljohn A, Bavari S, Aman MJ. 2004. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol, 40: 27–31.CrossRefPubMedGoogle Scholar
  57. Wagner R, Deml L, Schirmbeck R, Reimann J, Wolf H. 1994. Induction of a MHC class I-restricted, CD8 positive cytolytic T-cell response by chimeric HIV-1 virus-like particles in vivo: implications on HIV vaccine development. Behring Inst Mitt, 95: 23–34.PubMedGoogle Scholar
  58. Walpita P, Barr J, Sherman M, Basler CF, Wang L. 2011. Vaccine Potential of Nipah Virus-Like Particles. PLoS One, 6: e18437.CrossRefGoogle Scholar
  59. Warfield KL, Aman MJ. 2011. Advances in virus-like particle vaccines for filoviruses. J Infect Dis, 204 Suppl 3: S1053–S1059.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Warfield KL, Bosio CM, Welcher BC, Deal EM, Mohamadzadeh M, Schmaljohn A, Aman MJ, Bavari S. 2003. Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A, 100: 15889–15894.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Warfield KL, Posten NA, Swenson DL, Olinger GG, Esposito D, Gillette WK, Hopkins RF, Costantino J, Panchal RG, Hartley JL, Aman MJ, Bavari S. 2007. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J Infect Dis, 196 Suppl 2: S421–S429.CrossRefPubMedGoogle Scholar
  62. WHO 2015. Ebola Situation Report 21 Oct 2015. http://apps.who. int/iris/bitstream/10665/190067/1/ebolasitrep21Oct2015_eng.pdfGoogle Scholar
  63. WHO 2016. Middle East respiratory syndrome coronavirus (MERSCoV)–Saudi Arabia. 22 June 2016. http://www.who.int/csr/don/22-june-2016-mers-saudi-arabia/en/Google Scholar
  64. Yamaji H, Nakamura M, Kuwahara M, Takahashi Y, Katsuda T, Konishi E. 2013. Efficient production of Japanese encephalitis virus-like particles by recombinant lepidopteran insect cells. Appl Microbiol Biotechnol, 97: 1071–1079.CrossRefPubMedGoogle Scholar
  65. Yang L, Song Y, Li X, Huang X, Liu J, Ding H, Zhu P, Zhou P. 2012. HIV-1 virus-like particles produced by stably transfected Drosophila S2 cells: a desirable vaccine component. J Virol, 86: 7662–7676.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zeltins A. 2013. Construction and characterization of virus-like particles: a review. Mol Biotechnol, 53: 92–107.CrossRefPubMedGoogle Scholar
  67. Zhang S, Liang M, Gu W, Li C, Miao F, Wang X, Jin C, Zhang L, Zhang F, Zhang Q, Jiang L, Li M, Li D. 2011. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice. Virol J, 8: 333.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Zhao Q, Li S, Yu H, Xia N, Modis Y. 2013. Virus-like particlebased human vaccines: quality assessment based on structural and functional properties. Trends Biotechnol, 31: 654–663.CrossRefPubMedGoogle Scholar
  69. Zhou ZR, Wang ML, Deng F, Li TX, Hu ZH, Wang HL. 2011. Production of CCHF virus-like particle by a baculovirus-insect cell expression system. Virol Sin, 26: 338–346.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Jinliang Liu
    • 1
  • Shiyu Dai
    • 1
  • Manli Wang
    • 1
  • Zhihong Hu
    • 1
  • Hualin Wang
    • 1
  • Fei Deng
    • 1
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations