Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Interplay of the ubiquitin proteasome system and the innate immune response is essential for the replication of infectious bronchitis virus

26 May 2021

Nishant Kumar Ojha, Jingjing Liu, … Min Liao

Analysis of critical protein–protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides

07 January 2023

Fatemeh Arabi-Jeshvaghani, Fatemeh Javadi‐Zarnaghi & Mohamad Reza Ganjalikhany

Cleavage of the selective autophagy receptor SQSTM1/p62 by the SARS-CoV-2 main protease NSP5 prevents the autophagic degradation of viral membrane proteins

03 June 2022

Yabin Zhang, Shiyan Liu, … Kefeng Lu

Structural characterization of the C-terminal domain of SARS-CoV-2 nucleocapsid protein

06 August 2020

Renjie Zhou, Rui Zeng, … Jian Lei

SARS-CoV-2 nucleocapsid and Nsp3 binding: an in silico study

04 August 2020

Muhammad Tahir Khan, Muhammad Tariq Zeb, … Muhammad Irfan

Predicted coronavirus Nsp5 protease cleavage sites in the human proteome

04 April 2022

Benjamin M. Scott, Vincent Lacasse, … Nikolaj S. Blom

Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: molecular insights revealed by Molecular Dynamics Simulations

23 November 2022

Meet Parmar, Ritik Thumar, … Dhaval Patel

The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein’s subcellular localization, palmitoylation and pseudovirus entry

27 December 2021

Xiao-Tao Zeng, Xiao-Xi Yu & Wei Cheng

Crucial mutation in the exoribonuclease domain of nsp14 of PEDV leads to high genetic instability during viral replication

07 June 2021

Xiaoyu Niu, Fanzhi Kong, … Qiuhong Wang

Download PDF
  • Research Article
  • Published: 30 May 2016

Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin

  • Jian Lei1,2 &
  • Rolf Hilgenfeld1,2 

Virologica Sinica volume 31, pages 288–299 (2016)Cite this article

  • 893 Accesses

  • 24 Citations

  • Metrics details

Abstract

The papain-like protease (PLpro) of Middle-East respiratory syndrome coronavirus (MERS-CoV) has proteolytic, deubiquitinating, and deISGylating activities. The latter two are involved in the suppression of the antiviral innate immune response of the host cell. To contribute to an understanding of this process, we present here the X-ray crystal structure of a complex between MERS-CoV PLpro and human ubiquitin (Ub) that is devoid of any covalent linkage between the two proteins. Five regions of the PLpro bind to two areas of the Ub. The C-terminal five residues of Ub, RLRGG, are similar to the P5–P1 residues of the polyprotein substrates of the PLpro and are responsible for the major part of the interaction between the two macromolecules. Through sitedirected mutagenesis, we demonstrate that conserved Asp165 and non-conserved Asp164 are important for the catalytic activities of MERS-CoV PLpro. The enzyme appears not to be optimized for catalytic efficiency; thus, replacement of Phe269 by Tyr leads to increased peptidolytic and deubiquitinating activities. Ubiquitin binding by MERS-CoV PLpro involves remarkable differences compared to the corresponding complex with SARS-CoV PLpro. The structure and the mutational study help understand common and unique features of the deubiquitinating activity of MERS-CoV PLpro.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Assiri A, McGeer A, Perl TM, Price CS, Al Rabeeah AA, Cummings DA, Alabdullatif ZN, Assad M, Almulhim A, Makhdoom H, Madani H, Alhakeem R, Al-Tawfiq JA, Cotton M, Watson SJ, Kellam P, Zumla AI, Memish ZA, KSA MERSCoV Investigation Team. 2013. Hospital outbreak of Middle East respiratory syndrome coronavirus. N Engl J Med, 369: 407–416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baez-Santos YM, Barraza SJ, Wilson MW, Agius MP, Mielech AM, Davis NM, Baker SC, Larsen SD, Mesecar AD. 2014a. Xray structural and biological evaluation of a series of potent and highly selective inhibitors of human coronavirus papain-like proteases. J Med Chem, 57: 2393–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baez-Santos YM, Mielech AM, Deng X, Baker S, Mesecar AD. 2014b. Catalytic function and substrate specificity of the PLpro domain of nsp3 from the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). J Virol, 88: 12511–12527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey-Elkin BA, Knaap RC, Johnson GG, Dalebout TJ, Ninaber DK, van Kasteren PB, Bredenbeek PJ, Snijder EJ, Kikkert M, Mark BL. 2014. Crystal structure of the Middle East respiratory syndrome coronavirus (MERS-CoV) papain-like protease bound to ubiquitin facilitates targeted disruption of deubiquitinating activity to demonstrate its role in innate immune suppression. J Biol Chem, 289: 34667–34682.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barretto N, Jukneliene D, Ratia K, Chen Z, Mesecar AD, Baker SC. 2005. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J Virol, 79: 15189–15198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bekes M, Rut W, Kasperkiewicz P, Mulder MP, Ovaa H, Drag M, Lima CD, Huang TT. 2015. SARS hCoV papain-like protease is a unique Lys48 linkage-specific di-distributive deubiquitinating enzyme. Biochem J, 468: 215–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butler D. 2015. South Korean MERS outbreak spotlights lack of research. Nature, 522: 139–140.

    Article  CAS  PubMed  Google Scholar 

  • Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. 2014. The SARS coronavirus nucleocapsid protein–forms and functions. Antiviral Res, 103: 39–50.

    Article  CAS  PubMed  Google Scholar 

  • Chen VB, Arendall WB, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr, 66: 12–21.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proc Natl Acad Sci USA, 106: 3484–3489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou CY, Lai HY, Chen HY, Cheng SC, Cheng KW, Chou YW. 2014. Structural basis for catalysis and ubiquitin recognition by the severe acute respiratory syndrome coronavirus papain-like protease. Acta Crystallogr D Biol Crystallogr, 70: 572–581.

    Article  CAS  PubMed  Google Scholar 

  • Dikic I, Wakatsuki S, Walters KJ. 2009. Ubiquitin-binding domains–from structures to functions. Nat Rev Mol Cell Biol, 10: 659–671.

    Article  CAS  PubMed  Google Scholar 

  • Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier RA, Berger A, Burguiere AM, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra JC, Müller S, Rickerts V, Stürmer M, Vieth S, Klenk HD, Osterhaus AD, Schmitz H, Doerr HW. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348: 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  • Eckerle I, Müller MA, Kallies S, Gotthardt DN, Drosten C. 2013. In-vitro renal epithelial cell infection reveals a viral kidney tropism as a potential mechanism for acute renal failure during Middle East Respiratory Syndrome (MERS) coronavirus infection. Virol J, 10: 359.

    Article  PubMed  PubMed Central  Google Scholar 

  • Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr D Biol Crystallogr, 66: 486–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R, Mattos C. 2015. Allosteric effects of the oncogenic RasQ61L mutant on Raf-RBD. Structure, 23: 505–516.

    Article  CAS  PubMed  Google Scholar 

  • Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. 2009. Severe acute respiratory syndrome coronavirus papain-like protease ubiquitin-like domain and catalytic domain regulate antagonism of IRF3 and NF-?B signaling. J Virol, 83: 6689–6705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale BG, Randall RE, Ortin J, Jackson D. 2008. The multifunctional NS1 protein of influenza A viruses. J Gen Virol, 89: 2359–2376.

    Article  CAS  PubMed  Google Scholar 

  • Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med, 121: 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KM, Smith CM, Rota PA, Baker SC. 2004. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol, 78: 13600–13612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Headd JJ, Echols N, Afonine PV, Grosse-Kunstleve RW, Chen VB, Moriarty NW, Richardson DC, Richardson JS, Adams PD. 2012. Use of knowledge-based restraints in phenix.refine to improve macromolecular refinement at low resolution. Acta Crystallogr D Biol Crystallogr, 68: 381–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgenfeld R. 2014. From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J, 281: 4085–4096.

    Article  CAS  PubMed  Google Scholar 

  • Hilgenfeld R, Peiris M. 2013. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res, 100: 286–295.

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Li P, Song L, Jeffrey PD, Chenova TA, Wilkinson KD, Cohen RE, Shi Y. 2005. Structure and mechanisms of the proteasome-associated deubiquitinating enzyme USP14. EMBO J, 24: 3747–3756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabsch W. 2010. XDS. Acta Crystallogr D Biol Crystallogr, 66: 125–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J Mol Biol, 372: 774–797.

    Article  CAS  PubMed  Google Scholar 

  • Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, De Risi J, Yang JY, Cox N, Hughes JM, Le-Duc JW, Bellini WJ, Anderson LJ, SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348: 1953–1966.

    Article  CAS  PubMed  Google Scholar 

  • Kuiken T, Fouchier RA, Schutten M, Rimmelzwaan GF, van Amerongen G, van Riel D, Laman JD, de Jong T, van Doornum G, Lim W, Ling AE, Chan PK, Tam JS, Zambon MC, Gopal R, Drosten C, van der Werf S, Escriou N, Manuguerra JC, Stöhr K, Peiris JS, Osterhaus AD. 2003. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet, 362: 263–270.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lei H, Santarsiero BD, Gatuz JL, Cao S, Rice AJ, Patel K, Szypulinski MZ, Ojeda I, Ghosh AK, Johnson ME. 2015. Inhibitor recognition specificity of MERS-CoV papain-like protease may differ from that of SARS-CoV. ACS Chem Biol, 10: 1456–1465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Mesters JR, Drosten C, Anemüller S, Ma Q, Hilgenfeld R. 2014. Crystal structure of the papain-like protease of MERScoronavirus reveals unusual, potentially druggable active-site features. Antiviral Res, 109: 72–82.

    Article  CAS  PubMed  Google Scholar 

  • Liu YC, Penninger J, Karin M. 2005. Immunity by ubiquitylation: a reversible process of modification. Nat Rev Immunol, 5: 941–952.

    Article  CAS  PubMed  Google Scholar 

  • Maringer K, Fernandez-Sesma A. 2014. Message in a bottle: lessons learned from antagonism of STING signalling during RNA virus infection. Cytokine Growth Factor Rev, 25: 669–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh K, Becker WB, Chanock RM. 1967. Growth in suckling- mouse brain of “IBV-like” viruses from patients with upper respiratory tract disease. Proc Natl Acad Sci USA, 58: 2268–2273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. 2014. MERS-CoV papain-like protease has delSGylating and deubiquitinating activities. Virology, 450-451: 64–70.

    Article  CAS  PubMed  Google Scholar 

  • Mielech AM, Deng X, Chen Y, Kindler E, Wheeler DL, Mesecar AD, Thiel V, Perlman S, Baker SC. 2015. Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol, 89: 4907–4917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller U, Darowski N, Fuchs MR, Förster R, Hellmig M, Paithankar KS, Pühringer S, Steffien M, Zocher G, Weiss MS. 2012. Facilities for macromolecular crystallography at the Helmholtz-Zentrum Berlin. J Synchrotron Radiat, 19: 442–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS Study Group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 361: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  • Pfoh R, Lacdao IK, Georges AA, Capar A, Zheng H, Frappier L, Saridakis V. 2015. Crystal structure of USP7 ubiquitin-like domains with an ICP0 peptide reveals a novel mechanism used by viral and cellular proteins to target USP7. PLoS Pathog, 11: e1004950.

    Article  Google Scholar 

  • Ratia K, Kilianski A, Baez-Santos YM, Baker SC, Mesecar AD. 2014. Structural basis for the ubiquitin-linkage specificity and deISGylating activity of SARS-CoV papain-like protease. PLoS Pathog, 10: e1004113.

    Article  Google Scholar 

  • Vagin A, Teplyakov A. 2010. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr, 66: 22–25.

    Article  CAS  PubMed  Google Scholar 

  • van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B. 2004. Identification of a new human coronavirus. Nat Med, 10: 368–373.

    Article  PubMed  Google Scholar 

  • Vijay-Kumar S, Bugg CE, Cook WJ. 1987. Structure of ubiquitin refined at 1.8 Å resolution. J Mol Biol, 194: 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xue S, Yang H, Chen C. 2016. Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virol Sin, 31: 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Weiss MS, Hilgenfeld R. 1997. On the use of the merging R factor as a quality indicator for X-ray data. J Appl Cryst, 30: 203–205.

    Article  CAS  Google Scholar 

  • Wojdyla JA, Manolaridis I, van Kasteren PB, Kikkert M, Snijder EJ, Gorbalenya AE, Tucker PA. 2010. Papain-like protease 1 from transmissible gastroenteritis virus: crystal structure and enzymatic activity toward viral and cellular substrates. J Virol, 84: 10063–10073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol, 79: 884–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, Chen Z. 2013. Proteolytic processing, deubiquitinase and interferon antagonist activities of Middle East respiratory syndrome coronavirus papain-like protease. J Gen Virol, 95: 614–626.

    Article  PubMed  Google Scholar 

  • Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 367: 1814–1820.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Biochemistry, Center for Structural and Cell Biology in Medicine, University of Lübeck, 23562, Lübeck, Germany

    Jian Lei & Rolf Hilgenfeld

  2. German Center for Infection Research (DZIF), University of Lübeck, 23562, Lübeck, Germany

    Jian Lei & Rolf Hilgenfeld

Authors
  1. Jian Lei
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Rolf Hilgenfeld
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Rolf Hilgenfeld.

Additional information

ORCID: 0000-0001-8850-2977

Electronic supplementary material

Supplementary material, approximately 194 KB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Hilgenfeld, R. Structural and mutational analysis of the interaction between the Middle-East respiratory syndrome coronavirus (MERS-CoV) papain-like protease and human ubiquitin. Virol. Sin. 31, 288–299 (2016). https://doi.org/10.1007/s12250-016-3742-4

Download citation

  • Received: 08 February 2016

  • Accepted: 10 May 2016

  • Published: 30 May 2016

  • Issue Date: August 2016

  • DOI: https://doi.org/10.1007/s12250-016-3742-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • coronavirus
  • Middle-East respiratory syndrome (MERS)
  • papain-like protease
  • ubiquitin
  • deubiquitinase
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.238.189.240

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.