Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Premature Stop Codon at Residue 101 within HIV-1 Rev Does Not Influence Viral Replication of Clade BC but Severely Reduces Viral Fitness of Clade B

11 December 2019

Zheng Wang, Xiaolin Ji, … Yiming Shao

PA-X: a key regulator of influenza A virus pathogenicity and host immune responses

04 July 2018

Jiao Hu, Chunxi Ma & Xiufan Liu

D614G mutation and SARS-CoV-2: impact on S-protein structure, function, infectivity, and immunity

10 November 2021

Manojit Bhattacharya, Srijan Chatterjee, … Chiranjib Chakraborty

Genetic variation and function of the HIV-1 Tat protein

05 March 2019

Cassandra Spector, Anthony R. Mele, … Michael R. Nonnemacher

PYRE insertion within HIV-1 subtype C p6-Gag functions as an ALIX-dependent late domain

11 June 2018

Devidas Chaturbhuj, Ajit Patil & Raman Gangakhedkar

HIV-1 Rev-RRE functional activity in primary isolates is highly dependent on minimal context-dependent changes in Rev

01 November 2022

Godfrey Dzhivhuho, Jordan Holsey, … Patrick E. H. Jackson

An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates

26 April 2022

Ravendra P. Chauhan & Michelle L. Gordon

CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures

17 May 2018

Youdiil Ophinni, Mari Inoue, … Masanori Kameoka

Identification of two residues within the NS1 of H7N9 influenza A virus that critically affect the protein stability and function

01 October 2018

Song Wang, Lanlan Zhang, … Ji-Long Chen

Download PDF
  • Research Article
  • Published: 21 March 2016

Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region

  • Xuechao Zhao1,
  • Lingyu Qian1,
  • Deyu Zhou1,
  • Di Qi1,
  • Chang Liu1 &
  • …
  • Xiaohong Kong1 

Virologica Sinica volume 31, pages 199–206 (2016)Cite this article

  • 255 Accesses

  • 3 Citations

  • Metrics details

Abstract

The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxyl-terminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA. 2005. The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem, 280: 38376–38382.

    Article  CAS  PubMed  Google Scholar 

  • Cohen J. 2012. The Many States Of HIV in America. Science, 337: 168–171.

    Article  PubMed  Google Scholar 

  • Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J. 2005. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. J Virol, 79: 9180–9191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essex M. 1999. Human immunodeficiency viruses in the developing world. Adv Virus Res, 53: 71–88.

    Article  CAS  PubMed  Google Scholar 

  • Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I. 2012. Human immunodeficiency virus-1 Tat activates NF-kappaB via physical interaction with IkappaB-alpha and p65. Nucleic Acids Res, 40: 3548–3562.

    Article  CAS  PubMed  Google Scholar 

  • Gatignol A, Jeang KT. 2000. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. Adv Pharmacol, 48: 209–227.

    Article  CAS  PubMed  Google Scholar 

  • Geretti AM. 2006. HIV-1 subtypes: epidemiology and significance for HIV management. Curr Opin Infect Dis, 19: 1–7.

    Article  PubMed  Google Scholar 

  • Gibellini D, Vitone F, Schiavone P, Re MC. 2005. HIV-1 tat protein and cell proliferation and survival: a brief review. New Microbiol, 28: 95–109.

    CAS  PubMed  Google Scholar 

  • Grisson RD, Chenine AL, Yeh LY, He J, Wood C, Bhat GJ, Xu W, Kankasa C, Ruprecht RM. 2004. Infectious molecular clone of a recently transmitted pediatric human immunodeficiency virus clade C isolate from Africa: evidence of intraclade recombination. J Virol, 78: 14066–14069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howcroft TK, Strebel K, Martin MA, Singer DS. 1993. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science (New York, N.Y.), 260: 1320–1322.

    Article  CAS  Google Scholar 

  • Kanki PJ, Hamel DJ, Sankale JL, Hsieh CC, Thior I, Barin F, Woodcock SA, Gueye-Ndiaye A, Zhang E, Montano M, Siby T, Marlink R, Doye I, Essex ME, Boup S. 1999. Human immunodeficiency virus type 1 subtypes differ in disease progression. Journal of Infectious Diseases, 179: 68–73.

    Article  CAS  PubMed  Google Scholar 

  • Karn J. 1999. Tackling Tat. J Mol Biol, 293: 235–254.

    Article  CAS  PubMed  Google Scholar 

  • Lata S, Ali A, Sood V, Raja R, Banerjea AC. 2015. HIV-1 Rev downregulates Tat expression and viral replication via modulation of NAD(P)H:quinine oxidoreductase 1 (NQO1). Nat Commun, 6: 7244.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcami J, Coiras M. 2010. Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res, 38: 3287–3307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loret EP, Georgel P, Johnson WC, Ho PS. 1992. Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator. Proc Natl Acad Sci U S A, 89: 9734–9738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P. 2008. Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol, 63: 366–376.

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, McCloskey T, Pahwa S, Verdin E. 1997. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science, 275: 1481–1485.

    Article  CAS  PubMed  Google Scholar 

  • Passiatore G, Rom S, Eletto D, Peruzzi F. 2009. HIV-1 Tat C-terminus is cleaved by calpain 1: implication for Tat-mediated neurotoxicity. Biochim Biophys Acta, 1793: 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Rana TM, Jeang KT. 1999. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys, 365: 175–185.

    Article  CAS  PubMed  Google Scholar 

  • Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, Gatignol A, Hiscott J. 2002. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology, 296: 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Saiyed ZM, Gandhi N, Agudelo M, Napuri J, Samikkannu T, Reddy PVB, Khatavkar P, Yndart A, Saxena SK, Nair MPN. 2011. HIV-1 Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: Implication for HIV-associated neurocognitive disorder (HAND). Neurochemistry International, 58: 656–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena SK, Tiwari S, Nair MPN. 2012. A Global Perspective on HIV/AIDS. Science, 337: 798–798.

    Article  CAS  PubMed  Google Scholar 

  • Sivakumaran H, van der Horst A, Fulcher AJ, Apolloni A, Lin MH, Jans DA, Harrich D. 2009. Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. J Virol, 83: 11694–11703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SM, Pentlicky S, Klase Z, Singh M, Neuveut C, Lu CY, Reitz MS, Yarchoan R, Marx PA, Jeang KT. 2003. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem, 278: 44816–44825.

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Neuveut C, Benkirane M, Jeang KT. 1998. Interaction of the second coding exon of Tat with human EF-1 delta delineates a mechanism for HIV-1-mediated shut-off of host mRNA translation. Biochem Biophys Res Commun, 244: 384–389.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China

    Xuechao Zhao, Lingyu Qian, Deyu Zhou, Di Qi, Chang Liu & Xiaohong Kong

Authors
  1. Xuechao Zhao
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Lingyu Qian
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Deyu Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Di Qi
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Chang Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Xiaohong Kong
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Xiaohong Kong.

Additional information

ORCID: 0000-0002-2543-9066

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Qian, L., Zhou, D. et al. Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region. Virol. Sin. 31, 199–206 (2016). https://doi.org/10.1007/s12250-016-3681-0

Download citation

  • Received: 20 November 2015

  • Accepted: 01 March 2016

  • Published: 21 March 2016

  • Issue Date: June 2016

  • DOI: https://doi.org/10.1007/s12250-016-3681-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Tat
  • subtype B/C
  • stability
  • transactivation
  • carboxyl-terminal region
  • NF-κB activation
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.238.134.157

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.