Abstract
The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxyl-terminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.

References
Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA. 2005. The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem, 280: 38376–38382.
Cohen J. 2012. The Many States Of HIV in America. Science, 337: 168–171.
Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J. 2005. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. J Virol, 79: 9180–9191.
Essex M. 1999. Human immunodeficiency viruses in the developing world. Adv Virus Res, 53: 71–88.
Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I. 2012. Human immunodeficiency virus-1 Tat activates NF-kappaB via physical interaction with IkappaB-alpha and p65. Nucleic Acids Res, 40: 3548–3562.
Gatignol A, Jeang KT. 2000. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. Adv Pharmacol, 48: 209–227.
Geretti AM. 2006. HIV-1 subtypes: epidemiology and significance for HIV management. Curr Opin Infect Dis, 19: 1–7.
Gibellini D, Vitone F, Schiavone P, Re MC. 2005. HIV-1 tat protein and cell proliferation and survival: a brief review. New Microbiol, 28: 95–109.
Grisson RD, Chenine AL, Yeh LY, He J, Wood C, Bhat GJ, Xu W, Kankasa C, Ruprecht RM. 2004. Infectious molecular clone of a recently transmitted pediatric human immunodeficiency virus clade C isolate from Africa: evidence of intraclade recombination. J Virol, 78: 14066–14069.
Howcroft TK, Strebel K, Martin MA, Singer DS. 1993. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science (New York, N.Y.), 260: 1320–1322.
Kanki PJ, Hamel DJ, Sankale JL, Hsieh CC, Thior I, Barin F, Woodcock SA, Gueye-Ndiaye A, Zhang E, Montano M, Siby T, Marlink R, Doye I, Essex ME, Boup S. 1999. Human immunodeficiency virus type 1 subtypes differ in disease progression. Journal of Infectious Diseases, 179: 68–73.
Karn J. 1999. Tackling Tat. J Mol Biol, 293: 235–254.
Lata S, Ali A, Sood V, Raja R, Banerjea AC. 2015. HIV-1 Rev downregulates Tat expression and viral replication via modulation of NAD(P)H:quinine oxidoreductase 1 (NQO1). Nat Commun, 6: 7244.
Lopez-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcami J, Coiras M. 2010. Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res, 38: 3287–3307.
Loret EP, Georgel P, Johnson WC, Ho PS. 1992. Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator. Proc Natl Acad Sci U S A, 89: 9734–9738.
Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P. 2008. Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol, 63: 366–376.
Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, McCloskey T, Pahwa S, Verdin E. 1997. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science, 275: 1481–1485.
Passiatore G, Rom S, Eletto D, Peruzzi F. 2009. HIV-1 Tat C-terminus is cleaved by calpain 1: implication for Tat-mediated neurotoxicity. Biochim Biophys Acta, 1793: 378–387.
Rana TM, Jeang KT. 1999. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys, 365: 175–185.
Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, Gatignol A, Hiscott J. 2002. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology, 296: 77–83.
Saiyed ZM, Gandhi N, Agudelo M, Napuri J, Samikkannu T, Reddy PVB, Khatavkar P, Yndart A, Saxena SK, Nair MPN. 2011. HIV-1 Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: Implication for HIV-associated neurocognitive disorder (HAND). Neurochemistry International, 58: 656–664.
Saxena SK, Tiwari S, Nair MPN. 2012. A Global Perspective on HIV/AIDS. Science, 337: 798–798.
Sivakumaran H, van der Horst A, Fulcher AJ, Apolloni A, Lin MH, Jans DA, Harrich D. 2009. Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. J Virol, 83: 11694–11703.
Smith SM, Pentlicky S, Klase Z, Singh M, Neuveut C, Lu CY, Reitz MS, Yarchoan R, Marx PA, Jeang KT. 2003. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem, 278: 44816–44825.
Xiao H, Neuveut C, Benkirane M, Jeang KT. 1998. Interaction of the second coding exon of Tat with human EF-1 delta delineates a mechanism for HIV-1-mediated shut-off of host mRNA translation. Biochem Biophys Res Commun, 244: 384–389.
Author information
Authors and Affiliations
Corresponding author
Additional information
ORCID: 0000-0002-2543-9066
Rights and permissions
About this article
Cite this article
Zhao, X., Qian, L., Zhou, D. et al. Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region. Virol. Sin. 31, 199–206 (2016). https://doi.org/10.1007/s12250-016-3681-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12250-016-3681-0
Keywords
- Tat
- subtype B/C
- stability
- transactivation
- carboxyl-terminal region
- NF-κB activation