Advertisement

Virologica Sinica

, Volume 31, Issue 3, pp 199–206 | Cite as

Stability of HIV-1 subtype B and C Tat is associated with variation in the carboxyl-terminal region

  • Xuechao Zhao
  • Lingyu Qian
  • Deyu Zhou
  • Di Qi
  • Chang Liu
  • Xiaohong Kong
Research Article

Abstract

The multifunctional trans-activator Tat is an essential regulatory protein for HIV-1 replication and is characterized by high sequence diversity. Numerous experimental studies have examined Tat in HIV-1 subtype B, but research on subtype C Tat is lacking, despite the high prevalence of infections caused by subtype C worldwide. We hypothesized that amino acid differences contribute to functional differences among Tat proteins. In the present study, we found that subtype B NL4-3 Tat and subtype C isolate HIV1084i Tat exhibited differences in stability by overexpressing the fusion protein Tat-Flag. In addition, 1084i Tat can activate LTR and NF-κB more efficiently than NL4-3 Tat. In analyses of the activities of the truncated forms of Tat, we found that the carboxyl-terminal region of Tat regulates its stability and transactivity. According to our results, we speculated that the differences in stability between B-Tat and C-Tat result in differences in transactivation ability.

Keywords

Tat subtype B/C stability transactivation carboxyl-terminal region NF-κB activation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Campbell GR, Watkins JD, Esquieu D, Pasquier E, Loret EP, Spector SA. 2005. The C terminus of HIV-1 Tat modulates the extent of CD178-mediated apoptosis of T cells. J Biol Chem, 280: 38376–38382.CrossRefPubMedGoogle Scholar
  2. Cohen J. 2012. The Many States Of HIV in America. Science, 337: 168–171.CrossRefPubMedGoogle Scholar
  3. Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J. 2005. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. J Virol, 79: 9180–9191.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Essex M. 1999. Human immunodeficiency viruses in the developing world. Adv Virus Res, 53: 71–88.CrossRefPubMedGoogle Scholar
  5. Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I. 2012. Human immunodeficiency virus-1 Tat activates NF-kappaB via physical interaction with IkappaB-alpha and p65. Nucleic Acids Res, 40: 3548–3562.CrossRefPubMedGoogle Scholar
  6. Gatignol A, Jeang KT. 2000. Tat as a transcriptional activator and a potential therapeutic target for HIV-1. Adv Pharmacol, 48: 209–227.CrossRefPubMedGoogle Scholar
  7. Geretti AM. 2006. HIV-1 subtypes: epidemiology and significance for HIV management. Curr Opin Infect Dis, 19: 1–7.CrossRefPubMedGoogle Scholar
  8. Gibellini D, Vitone F, Schiavone P, Re MC. 2005. HIV-1 tat protein and cell proliferation and survival: a brief review. New Microbiol, 28: 95–109.PubMedGoogle Scholar
  9. Grisson RD, Chenine AL, Yeh LY, He J, Wood C, Bhat GJ, Xu W, Kankasa C, Ruprecht RM. 2004. Infectious molecular clone of a recently transmitted pediatric human immunodeficiency virus clade C isolate from Africa: evidence of intraclade recombination. J Virol, 78: 14066–14069.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Howcroft TK, Strebel K, Martin MA, Singer DS. 1993. Repression of MHC class I gene promoter activity by two-exon Tat of HIV. Science (New York, N.Y.), 260: 1320–1322.CrossRefGoogle Scholar
  11. Kanki PJ, Hamel DJ, Sankale JL, Hsieh CC, Thior I, Barin F, Woodcock SA, Gueye-Ndiaye A, Zhang E, Montano M, Siby T, Marlink R, Doye I, Essex ME, Boup S. 1999. Human immunodeficiency virus type 1 subtypes differ in disease progression. Journal of Infectious Diseases, 179: 68–73.CrossRefPubMedGoogle Scholar
  12. Karn J. 1999. Tackling Tat. J Mol Biol, 293: 235–254.CrossRefPubMedGoogle Scholar
  13. Lata S, Ali A, Sood V, Raja R, Banerjea AC. 2015. HIV-1 Rev downregulates Tat expression and viral replication via modulation of NAD(P)H:quinine oxidoreductase 1 (NQO1). Nat Commun, 6: 7244.CrossRefPubMedGoogle Scholar
  14. Lopez-Huertas MR, Callejas S, Abia D, Mateos E, Dopazo A, Alcami J, Coiras M. 2010. Modifications in host cell cytoskeleton structure and function mediated by intracellular HIV-1 Tat protein are greatly dependent on the second coding exon. Nucleic Acids Res, 38: 3287–3307.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Loret EP, Georgel P, Johnson WC, Ho PS. 1992. Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator. Proc Natl Acad Sci U S A, 89: 9734–9738.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mishra M, Vetrivel S, Siddappa NB, Ranga U, Seth P. 2008. Clade-specific differences in neurotoxicity of human immunodeficiency virus-1 B and C Tat of human neurons: significance of dicysteine C30C31 motif. Ann Neurol, 63: 366–376.CrossRefPubMedGoogle Scholar
  17. Ott M, Emiliani S, Van Lint C, Herbein G, Lovett J, Chirmule N, McCloskey T, Pahwa S, Verdin E. 1997. Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science, 275: 1481–1485.CrossRefPubMedGoogle Scholar
  18. Passiatore G, Rom S, Eletto D, Peruzzi F. 2009. HIV-1 Tat C-terminus is cleaved by calpain 1: implication for Tat-mediated neurotoxicity. Biochim Biophys Acta, 1793: 378–387.CrossRefPubMedGoogle Scholar
  19. Rana TM, Jeang KT. 1999. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch Biochem Biophys, 365: 175–185.CrossRefPubMedGoogle Scholar
  20. Roof P, Ricci M, Genin P, Montano MA, Essex M, Wainberg MA, Gatignol A, Hiscott J. 2002. Differential regulation of HIV-1 clade-specific B, C, and E long terminal repeats by NF-kappaB and the Tat transactivator. Virology, 296: 77–83.CrossRefPubMedGoogle Scholar
  21. Saiyed ZM, Gandhi N, Agudelo M, Napuri J, Samikkannu T, Reddy PVB, Khatavkar P, Yndart A, Saxena SK, Nair MPN. 2011. HIV-1 Tat upregulates expression of histone deacetylase-2 (HDAC2) in human neurons: Implication for HIV-associated neurocognitive disorder (HAND). Neurochemistry International, 58: 656–664.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Saxena SK, Tiwari S, Nair MPN. 2012. A Global Perspective on HIV/AIDS. Science, 337: 798–798.CrossRefPubMedGoogle Scholar
  23. Sivakumaran H, van der Horst A, Fulcher AJ, Apolloni A, Lin MH, Jans DA, Harrich D. 2009. Arginine methylation increases the stability of human immunodeficiency virus type 1 Tat. J Virol, 83: 11694–11703.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Smith SM, Pentlicky S, Klase Z, Singh M, Neuveut C, Lu CY, Reitz MS, Yarchoan R, Marx PA, Jeang KT. 2003. An in vivo replication-important function in the second coding exon of Tat is constrained against mutation despite cytotoxic T lymphocyte selection. J Biol Chem, 278: 44816–44825.CrossRefPubMedGoogle Scholar
  25. Xiao H, Neuveut C, Benkirane M, Jeang KT. 1998. Interaction of the second coding exon of Tat with human EF-1 delta delineates a mechanism for HIV-1-mediated shut-off of host mRNA translation. Biochem Biophys Res Commun, 244: 384–389.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Xuechao Zhao
    • 1
  • Lingyu Qian
    • 1
  • Deyu Zhou
    • 1
  • Di Qi
    • 1
  • Chang Liu
    • 1
  • Xiaohong Kong
    • 1
  1. 1.Laboratory of Medical Molecular Virology, School of MedicineNankai UniversityTianjinChina

Personalised recommendations