Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Acute transcriptomic changes in murine RAW 264.7 cells following pseudorabies virus infection

21 October 2022

Chao Tong, Peng-Fei Fu, … Jiang Wang

Comparative Transcriptome Analysis Reveals Different Host Cell Responses to Acute and Persistent Foot-and-Mouth Disease Virus Infection

11 September 2019

Jiadai Li, Lingling Han, … Chao Shen

Transcriptomic analysis reveals that enterovirus F strain SWUN-AB001 infection activates JNK/SAPK and p38 MAPK signaling pathways in MDBK cells

13 December 2018

Bin Zhang, Xinnuo Chen, … Cheng Tang

Transcriptome analysis reveals modulation of the STAT family in PEDV-infected IPEC-J2 cells

14 December 2020

Zhengzheng Hu, Yuchen Li, … Jianfeng Liu

Transcriptome sequencing analysis of porcine alveolar macrophages infected with PRRSV strains to elucidate virus pathogenicity and immune evasion strategies

31 July 2021

Feng-Xue Wang, Xing Liu, … Yong-Jun Wen

Gene expression profiles in neurological tissues during West Nile virus infection: a critical meta-analysis

13 July 2018

Robin Kosch, Julien Delarocque, … Klaus Jung

Transcriptome analysis of PK-15 cells expressing CSFV NS4A

12 December 2022

Huifang Lv, Zhifeng Peng, … Wang Dong

Profiling and functional analysis of differentially expressed circular RNAs identified in foot-and-mouth disease virus infected PK-15 cells

21 March 2022

JinKe Yang, Bo Yang, … Xiangtao Liu

Transcriptional profiles of PBMCs from pigs infected with three genetically diverse porcine reproductive and respiratory syndrome virus strains

07 June 2018

Marzena Rola-Łuszczak, Magdalena Materniak-Kornas, … Jacek Kuźmak

Download PDF
  • Research Article
  • Published: 08 April 2016

Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus

  • Zixin Ni1,2,
  • Fan Yang1,
  • Weijun Cao1,
  • Xiangle Zhang1,
  • Ye Jin1,
  • Ruoqing Mao1,
  • Xiaoli Du1,
  • Weiwei Li1,
  • Jianhong Guo1,
  • Xiangtao Liu1,
  • Zixiang Zhu1 &
  • …
  • Haixue Zheng1 

Virologica Sinica volume 31, pages 249–257 (2016)Cite this article

  • 285 Accesses

  • 3 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious disease in livestock. The viral proteinase Lpro of FMDV is involved in pathogenicity, and mutation of the Lpro SAP domain reduces FMDV pathogenicity in pigs. To determine the gene expression profiles associated with decreased pathogenicity in porcine cells, we performed transcriptome analysis using next-generation sequencing technology and compared differentially expressed genes in SK6 cells infected with FMDV containing Lpro with either a wild-type or mutated version of the SAP domain. This analysis yielded 1,853 genes that exhibited a ≥ 2-fold change in expression and was validated by real-time quantitative PCR detection of several differentially expressed genes. Many of the differentially expressed genes correlated with antiviral responses corresponded to genes associated with transcription factors, immune regulation, cytokine production, inflammatory response, and apoptosis. Alterations in gene expression profiles may be responsible for the variations in pathogenicity observed between the two FMDV variants. Our results provided genes of interest for the further study of antiviral pathways and pathogenic mechanisms related to FMDV Lpro.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Ahn JS, Whitby MC. 2003. The role of the SAP motif in promoting Holliday junction binding and resolution by SpCCE1. J Biol Chem, 278: 29121–29129.

    Article  CAS  PubMed  Google Scholar 

  • Alexandersen S, Zhang Z, Donaldson AI, Garland AJ. 2003. The pathogenesis and diagnosis of foot-and-mouth disease. J Comp Pathol, 129: 1–36.

    Article  CAS  PubMed  Google Scholar 

  • Aravind L, Koonin EV. 2000. SAP-a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci, 25: 112–114.

    Article  CAS  PubMed  Google Scholar 

  • Audic S, Claverie JM. 1997. The significance of digital gene expression profiles. Genome Res, 7: 986–995.

    CAS  PubMed  Google Scholar 

  • Barasa M, Catley A, Machuchu D, Laqua H, Puot E, Tap KD, Ikiror D. 2008. Foot-and-mouth disease vaccination in South Sudan: benefit-cost analysis and livelihoods impact. Transbound Emerg Dis, 55: 339–351.

    Article  CAS  PubMed  Google Scholar 

  • Bohm F, Kappes F, Scholten I, Richter N, Matsuo H, Knippers R, Waldmann T. 2005. The SAF-box domain of chromatin protein DEK. Nucleic Acids Res, 33: 1101–1110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheyssac C, Dina C, Lepretre F, Vasseur-Delannoy V, Dechaume A, Lobbens S, Balkau B, Ruiz J, Charpentier G, Pattou F, Joly E, Prentki M, Hansen T, Pedersen O, Vaxillaire M, Froguel P. 2006. EIF4A2 is a positional candidate gene at the 3q27 locus linked to type 2 diabetes in French families. Diabetes, 55: 1171–1176.

    Article  CAS  PubMed  Google Scholar 

  • Chinsangaram J, Mason PW, Grubman MJ. 1998. Protection of swine by live and inactivated vaccines prepared from a leader proteinase-deficient serotype A12 foot-and-mouth disease virus. Vaccine, 16: 1516–1522.

    Article  CAS  PubMed  Google Scholar 

  • Clarke BE, Sangar DV, Burroughs JN, Newton SE, Carroll AR, Rowlands DJ. 1985. Two initiation sites for foot-and-mouth disease virus polyprotein in vivo. J Gen Virol, 66: 2615–2626.

    Article  CAS  PubMed  Google Scholar 

  • de Los Santos T, Diaz-San Segundo F, Grubman MJ. 2007. Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J Virol, 81: 12803–12815.

    Article  PubMed  Google Scholar 

  • de Los Santos T, Diaz-San Segundo F, Zhu J, Koster M, Dias CC, Grubman MJ. 2009. A conserved domain in the leader proteinase of foot-and-mouth disease virus is required for proper subcellular localization and function. J Virol, 83: 1800–1810.

    Article  Google Scholar 

  • de Los ST, de Avila BS, Weiblen R, Grubman MJ. 2006. The leader proteinase of foot-and-mouth disease virus inhibits the induction of beta interferon mRNA and blocks the host innate immune response. J Virol, 80: 1906–1914.

    Article  Google Scholar 

  • Devaney MA, Vakharia VN, Lloyd RE, Ehrenfeld E, Grubman MJ. 1988. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol, 62: 4407–4409.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diaz-San Segundo F, Weiss M, Perez-Martin E, Dias CC, Grubman MJ, de Los Santos T. 2012. Inoculation of swine with footand-mouth disease SAP-mutant virus induces early protection against disease. J Virol, 86: 1316–1327.

    Article  CAS  PubMed Central  Google Scholar 

  • Dienz O, Rud JG, Eaton SM, Lanthier PA, Burg E, Drew A, Bunn J, Suratt BT, Haynes L, Rincon M. 2012. Essential role of IL-6 in protection against H1N1 influenza virus by promoting neutrophil survival in the lung. Mucosal Immunol, 5: 258–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ElAntak L, Tzakos AG, Locker N, Lukavsky PJ. 2007. Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J Biol Chem, 282: 8165–8174.

    Article  CAS  PubMed  Google Scholar 

  • Grubman MJ, Moraes MP, Diaz-San Segundo F, Pena L, de Los Santos T. 2008. Evading the host immune response: how footand- mouth disease virus has become an effective pathogen. FEMS Immunol Med Microbiol, 53: 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Han H, Xue-Franzen Y, Miao X, Nagy E, Li N, Xu D, Sjoberg J, Bjorkholm M, Claesson HE. 2015. Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells. Prostaglandins Other Lipid Mediat, 121: 122–130.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. 2008. KEGG for linking genomes to life and the environment. Nucleic Acids Res, 36: D480–D484.

  • Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R, Przybylski M, Fackelmayer FO. 2000. SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol, 20: 7480–7489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchweger R, Ziegler E, Lamphear BJ, Waters D, Liebig HD, Sommergruber W, Sobrino F, Hohenadl C, Blaas D, Rhoads RE, Et A. 1994. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol, 68: 5677–5684.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kyono K, Miyashiro M, Taguchi I. 2002. Human eukaryotic initiation factor 4AII associates with hepatitis C virus NS5B protein in vitro. Biochem Biophys Res Commun, 292: 659–666.

    Article  CAS  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics, 24: 713–714.

    Article  CAS  PubMed  Google Scholar 

  • Medina M, Domingo E, Brangwyn JK, Belsham GJ. 1993. The two species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology, 194: 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Meijer HA, Kong YW, Lu WT, Wilczynska A, Spriggs RV, Robinson SW, Godfrey JD, Willis AE, Bushell M. 2013. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science, 340: 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods, 5: 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. 1999. The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature, 398: 252–256.

    Article  CAS  PubMed  Google Scholar 

  • Pega J, Bucafusco D, Di Giacomo S, Schammas JM, Malacari D, Capozzo AV, Arzt J, Perez-Beascoechea C, Maradei E, Rodriguez LL, Borca MV, Perez-Filgueira M. 2013. Early adaptive immune responses in the respiratory tract of foot-and-mouth disease virus-infected cattle. J Virol, 87: 2489–2495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry BD, Rich KM. 2007. Poverty impacts of foot-and-mouth disease and the poverty reduction implications of its control. Vet Rec, 160: 238–241.

    Article  CAS  PubMed  Google Scholar 

  • Piccone ME, Rieder E, Mason PW, Grubman MJ. 1995. The footand-mouth disease virus leader proteinase gene is not required for viral replication. J Virol, 69: 5376–5382.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piccone ME, Zellner M, Kumosinski TF, Mason PW, Grubman MJ. 1995. Identification of the active-site residues of the L proteinase of foot-and-mouth disease virus. J Virol, 69: 4950–4956.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racaniello VR. 2007. Picornaviridae: The Viruses and Their Replication. In: Fields virology (5th ed). Philadelphia: Lippin-cott-Raven, pp. 795–948.

    Google Scholar 

  • Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. American journal of epidemiology, 27: 493–497.

    Google Scholar 

  • Rufael T, Catley A, Bogale A, Sahle M, Shiferaw Y. 2008. Foot and mouth disease in the Borana pastoral system, southern Ethiopia and implications for livelihoods and international trade. Trop Anim Health Prod, 40: 29–38.

    Article  CAS  PubMed  Google Scholar 

  • Ruggli N, Tratschin JD, Schweizer M, McCullough KC, Hofmann MA, Summerfield A. 2003. Classical swine fever virus interferes with cellular antiviral defense: evidence for a novel function of N(pro). J Virol, 77: 7645–7654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unbehaun A, Marintchev A, Lomakin IB, Didenko T, Wagner G, Hellen CU, Pestova TV. 2007. Position of eukaryotic initiation factor eIF5B on the 80S ribosome mapped by directed hydroxyl radical probing. EMBO J, 26: 3109–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Fang L, Luo R, Ye R, Fang Y, Xie L, Chen H, Xiao S. 2010. Foot-and-mouth disease virus leader proteinase inhibits dsRNA-induced type I interferon transcription by decreasing interferon regulatory factor 3/7 in protein levels. Biochem Biophys Res Commun, 399: 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki S, Muta T, Takeshige K. 2001. A novel IkappaB protein, IkappaB-zeta, induced by proinflammatory stimuli, negatively regulates nuclear factor-kappaB in the nuclei. J Biol Chem, 276: 27657–27662.

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Guo J, Jin Y, Yang F, He J, Lv L, Zhang K, Wu Q, Liu X, Cai X. 2013. Engineering foot-and-mouth disease viruses with improved growth properties for vaccine development. PLoS One, 8: e55228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J, Weiss M, Grubman MJ, de Los Santos T. 2010. Differential gene expression in bovine cells infected with wild type and leaderless foot-and-mouth disease virus. Virology, 404: 32–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China

    Zixin Ni, Fan Yang, Weijun Cao, Xiangle Zhang, Ye Jin, Ruoqing Mao, Xiaoli Du, Weiwei Li, Jianhong Guo, Xiangtao Liu, Zixiang Zhu & Haixue Zheng

  2. College of Veterinary Medicine, China Agricultural University, Beijing, 100083, China

    Zixin Ni

Authors
  1. Zixin Ni
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fan Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Weijun Cao
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Xiangle Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Ye Jin
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Ruoqing Mao
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Xiaoli Du
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Weiwei Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Jianhong Guo
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Xiangtao Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Zixiang Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. Haixue Zheng
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Zixiang Zhu or Haixue Zheng.

Additional information

These authors contributed equally to this work.

ORCID: 0000-0002-4093-9683

ORCID: 0000-0001-6850-1379

Electronic supplementary material

Supplementary material, approximately 1.39 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ni, Z., Yang, F., Cao, W. et al. Differential gene expression in porcine SK6 cells infected with wild-type and SAP domain-mutant foot-and-mouth disease virus. Virol. Sin. 31, 249–257 (2016). https://doi.org/10.1007/s12250-015-3709-x

Download citation

  • Received: 26 December 2015

  • Accepted: 03 March 2016

  • Published: 08 April 2016

  • Issue Date: June 2016

  • DOI: https://doi.org/10.1007/s12250-015-3709-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Foot-and-mouth disease virus (FMDV)
  • leader protein
  • SAP region
  • transcriptome analysis
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.168.16

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.