Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The recombinant pseudorabies virus expressing African swine fever virus CD2v protein is safe and effective in mice

16 November 2020

Zhihua Feng, Jianghua Chen, … Shaoli Cai

A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs

01 March 2020

Weiye Chen, Dongming Zhao, … Zhigao Bu

African Swine Fever Virus MGF-110-9L-deficient Mutant Has Attenuated Virulence in Pigs

10 March 2021

Dan Li, Yinguang Liu, … Zhijie Liu

Attenuated African swine fever virus through serial passaging of viruses in cell culture: a brief review on the knowledge gathered during 60 years of research

14 October 2022

Xiaoyue Zhang, Zhenzhong Wang, … Zhiliang Wang

Antigenic and immunogenic properties of recombinant proteins consisting of two immunodominant African swine fever virus proteins fused with bacterial lipoprotein OprI

21 January 2022

Guanglei Zhang, Wei Liu, … Huiyun Chang

Evaluation of surface glycoproteins of classical swine fever virus as immunogens and reagents for serological diagnosis of infections in pigs: a recombinant Newcastle disease virus approach

09 October 2019

Rakesh Kumar, Vishnu Kumar, … Sachin Kumar

African swine fever vaccines: a promising work still in progress

02 July 2020

Laia Bosch-Camós, Elisabeth López & Fernando Rodriguez

Evaluation of an African swine fever (ASF) vaccine strategy incorporating priming with an alphavirus-expressed antigen followed by boosting with attenuated ASF virus

26 October 2018

Maria V. Murgia, Mark Mogler, … Natasha N. Gaudreault

Substitution of warthog NF-κB motifs into RELA of domestic pigs is not sufficient to confer resilience to African swine fever virus

02 June 2020

Stephen McCleary, Rebecca Strong, … Helen R. Crooke

Download PDF
  • Research Article
  • Published: 11 March 2016

Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice

  • Xinxin Chen1,
  • Jifei Yang1,
  • Yanhong Ji1,
  • Edward Okoth3,
  • Bin Liu1,
  • Xiaoyang Li1,
  • Hong Yin1,2 &
  • …
  • Qiyun Zhu1 

Virologica Sinica volume 31, pages 150–159 (2016)Cite this article

  • 827 Accesses

  • 14 Citations

  • 3 Altmetric

  • Metrics details

Abstract

African swine fever (ASF) is a lethal hemorrhagic disease that affects wild and domestic swine. The etiological agent of ASF is African swine fever virus (ASFV). Since the first case was described in Kenya in 1921, the disease has spread to many other countries. No commercial vaccines are available to prevent ASF. In this study, we generated a recombinant Newcastle disease virus (rNDV) expressing ASFV protein 72 (p72) by reverse genetics and evaluated its humoral and cellular immunogenicity in a mouse model. The recombinant virus, rNDV/p72, replicated well in embryonated chicken eggs and was safe to use in chicks and mice. The p72 gene in rNDV/p72 was stably maintained through ten passages. Mice immunized with rNDV/p72 developed high titers of ASFV p72 specific IgG antibody, and had higher levels of IgG1 than IgG2a. Immunization also elicited T-cell proliferation and secretion of IFN-γ and IL-4. Taken together, these results indicate that rNDV expressing ASFV p72 might be a potential vaccine candidate for preventing ASF.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Alexander DJ. 1989. Newcastle disease. Philadelphia: The American Association of Avian Pathologists, Inc., pp114–120.

  • Anis MM, Fulton SA, Reba SM, Harding CV, Boom WH. 2007. Modulation of naive CD4+ T-cell responses to an airway antigen during pulmonary mycobacterial infection. Infect Immun, 75: 2260–2268.

    CAS  Google Scholar 

  • Argilaguet JM, Pérez-Martín E, López S, Goethe M, Escribano J, Giesow K, Keil GM, Rodríguez F. 2013. BacMam immunization partially protects pigs against sublethal challenge with African swine fever virus. Antiviral Res, 98: 61–65.

    CAS  PubMed  Google Scholar 

  • Argilaguet JM, Perez-Martin E, Nofrarias M, Gallardo C, Accensi F, Lacasta A, Mora M, Ballester M, Galindo-Cardiel I, Lopez-Soria S, Escribano JM, Reche PA, Rodriguez F. 2012. DNA vaccination partially protects against African swine fever virus lethal challenge in the absence of antibodies. PLoS One, 7: e40942.

    CAS  PubMed  Google Scholar 

  • Barderas M, Rodriguez F, Gomez-Puertas P, Aviles M, Beitia F, Alonso C, Escribano J. 2001. Antigenic and immunogenic properties of a chimera of two immunodominant African swine fever virus proteins. Arch Virol, 146: 1681–1691.

    CAS  PubMed  Google Scholar 

  • Boinas F, Hutchings G, Dixon L, Wilkinson P. 2004. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J Gen Virol, 85: 2177–2187.

    CAS  PubMed  Google Scholar 

  • Borca M, Irusta P, Carrillo C, Afonso C, Burrage T, Rock D. 1994. African swine fever virus structural protein p72 contains a conformational neutralizing epitope. Virology, 201: 413–418.

    CAS  PubMed  Google Scholar 

  • Bukreyev A, Huang Z, Yang L, Elankumaran S, Claire MS, Murphy BR, Samal SK, Collins PL. 2005. Recombinant Newcastle disease virus expressing a foreign viral antigen is attenuated and highly immunogenic in primates. J Virol, 79: 13275–13284.

    CAS  PubMed  Google Scholar 

  • Callaway E. 2012. Pig fever sweeps across Russia. Nature, 488: 565–566.

    CAS  PubMed  Google Scholar 

  • Carrascosa J, González P, Carrascosa A, Garcia-Barreno B, Enjuanes L, Vinuela E. 1986. Localization of structural proteins in African swine fever virus particles by immunoelectron microscopy. J Virol, 58: 377–384.

    CAS  PubMed  Google Scholar 

  • Costa JV. 1990. African swine fever virus. In: Molecular Biology of Iridoviruses. Darai G, ed. Vienna & New York: Springer-Verlag, pp247–270.

    Google Scholar 

  • Costard S, Wieland B, de Glanville W, Jori F, Rowlands R, Vosloo W, Roger F, Pfeiffer DU, Dixon LK. 2009a. African swine fever: how can global spread be prevented? Philosophical Transactions of the Royal Society B: Biological Sciences, 364: 2683–2696.

    Article  Google Scholar 

  • Costard S, Wieland B, de Glanville W, Jori F, Rowlands R, Vosloo W, Roger F, Pfeiffer DU, Dixon LK. 2009b. African swine fever: how can global spread be prevented? Philos Trans R Soc Lond B Biol Sci, 364: 2683–2696.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Leeuw O, Peeters B. 1999. Complete nucleotide sequence of Newcastle disease virus: evidence for the existence of a new genus within the subfamily Paramyxovirinae. J Gen Virol, 80: 131–136.

    CAS  PubMed  Google Scholar 

  • Dixon LK, Costa JV, Escribano JM, Rock DL, Vinuela E, Wilkinson PJ. 2000. In: The Asfarviridae. Van Regenmortel CMFMHV, Bishop DHL, Carsten EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB. (Eds.). New York: Academic Press, pp116–159.

  • Eustace Montgomery R. 1921. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther, 34: 159–191.

    Google Scholar 

  • Forman A, Wardley R, Wilkinson P. 1982. The immunological response of pigs and guinea pigs to antigens of African swine fever virus. Arch Virol, 74: 91–100.

    CAS  PubMed  Google Scholar 

  • Gallardo C, Fernández-Pinero J, Pelayo V, Gazaev I, Markowska-Daniel I, Pridotkas G, Nieto R, Fernández-Pacheco P, Bokhan S, Nevolko O. 2014. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerg Infect Dis, 20: 1544.

    PubMed  Google Scholar 

  • Ganar K, Das M, Sinha S, Kumar S. 2014. Newcastle disease virus: current status and our understanding. Virus Res, 184: 71–81.

    CAS  PubMed  Google Scholar 

  • Garcia-Barreno B, Sanz A, Nogal M, Vinuela E, Enjuanes L. 1986. Monoclonal antibodies of African swine fever virus: antigenic differences among field virus isolates and viruses passaged in cell culture. J Virol, 58: 385–392.

    CAS  PubMed  Google Scholar 

  • Garcia-Escudero R, Andres G, Almazan F, Vinuela E. 1998. Inducible gene expression from African swine fever virus recombinants: analysis of the major capsid protein p72. J Virol, 72: 3185–3195.

    CAS  PubMed  Google Scholar 

  • Ge J, Deng G, Wen Z, Tian G, Wang Y, Shi J, Wang X, Li Y, Hu S, Jiang Y, Yang C, Yu K, Bu Z, Chen H. 2007. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol, 81: 150–158.

    CAS  PubMed  Google Scholar 

  • Ge J, Wang X, Tao L, Wen Z, Feng N, Yang S, Xia X, Yang C, Chen H, Bu Z. 2011. Newcastle disease virus-vectored rabies vaccine is safe, highly immunogenic, and provides long-lasting protection in dogs and cats. J Virol, 85: 8241–8252.

    CAS  PubMed  Google Scholar 

  • Ge J, Wang X, Tian M, Gao Y, Wen Z, Yu G, Zhou W, Zu S, Bu Z. 2015. Recombinant Newcastle disease viral vector expressing hemagglutinin or fusion of canine distemper virus is safe and immunogenic in minks. Vaccine, 33: 2457–2462.

    CAS  PubMed  Google Scholar 

  • Hess WR. 1982. African swine fever: a reassessment. Adv Vet SciComp Med, 25: 39–69.

    Google Scholar 

  • Huang ZH, Krishnamurthy S, Panda A, Samal SK. 2001. Highlevel expression of a foreign gene from the most 3'-proximal locus of a recombinant Newcastle disease virus. J Gen Virol, 82: 1729–1736.

    CAS  Google Scholar 

  • Kim SH, Chen S, Jiang X, Green KY, Samal SK. 2014b. Newcastle disease virus vector producing human norovirus-like particles induces serum, cellular, and mucosal immune responses in mice. J Virol, 88: 9718–9727.

    PubMed  Google Scholar 

  • Kim SH, Paldurai A, Xiao S, Collins PL, Samal SK. 2014a. Modified Newcastle disease virus vectors expressing the H5 hemagglutinin induce enhanced protection against highly pathogenic H5N1 avian influenza virus in chickens. Vaccine, 32: 4428–4435.

    CAS  PubMed  Google Scholar 

  • Kleiboeker SB, Scoles GA. 2001. Pathogenesis of African swine fever virus in Ornithodoros ticks. Amin Health Res Rev, 2: 121–128.

    CAS  Google Scholar 

  • Leitão A, Cartaxeiro C, Coelho R, Cruz B, Parkhouse R, Portugal FC, Vigário JD, Martins CL. 2001. The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti-virus immune response. J Gen Virol, 82: 513–523.

    PubMed  Google Scholar 

  • Leitão A, Malur A, Cornelis P, Martins CL. 1998. Identification of a 25-aminoacid sequence from the major African swine fever virus structural protein VP72 recognised by porcine cytotoxic T lymphocytes using a lipoprotein based expression system. J Gen Virol, 75: 113–119.

    Google Scholar 

  • Neilan JG, Zsak L, Lu Z, Burrage TG, Kutish GF, Rock DL. 2004. Neutralizing antibodies to African swine fever virus proteins p30, p54, and p72 are not sufficient for antibody-mediated protection. Virology, 319: 337–342.

    CAS  Google Scholar 

  • Onisk D, Borca M, Kutish S, Kramer E, Irusta P, Rock D. 1994. Passively transferred African swine fever virus antibodies protect swine against lethal infection. Virology, 198: 350–354.

    CAS  PubMed  Google Scholar 

  • Oura C, Denyer M, Takamatsu H, Parkhouse R. 2005. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. J Gen Virol, 86: 2445–2450.

    CAS  PubMed  Google Scholar 

  • Pejsak Z, Truszczynski M, Niemczuk K, Kozak E, Markowska-Daniel I. 2014. Epidemiology of African Swine Fever in Poland since the detection of the first case. Pol J Vet Sci, 17: 665–672.

    CAS  PubMed  Google Scholar 

  • Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am J Epidemiol, 27: 493–497.

    Google Scholar 

  • Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C, Vosloo W, Dwarka R, Onashvili T, Albina E, Dixon LK. 2008. African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis, 14: 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salas J, Salas M, Vinuela E. 1999. Chapter 18-African swine fever virus: a missing link between poxviruses and iridoviruses. In: Origin and Evolution of Viruses. Esteban Domingo, Robert Webster and John Holland. Elsevier: Academic Press, pp 467–480.

    Google Scholar 

  • Schnell MJ, Mebatsion T, Conzelmann K-K. 1994. Infectious rabies viruses from cloned cDNA. EMBO J, 13: 4195.

    CAS  PubMed  Google Scholar 

  • Wyatt LS, Moss B, Rozenblatt S. 1995. Replication-deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology, 210: 202–205.

    CAS  PubMed  Google Scholar 

  • Ye L, Lin J, Sun Y, Bennouna S, Lo M, Wu Q, Bu Z, Pulendran B, Compans RW, Yang C. 2006. Ebola virus-like particles produced in insect cells exhibit dendritic cell stimulating activity and induce neutralizing antibodies. Virology, 351: 260–270.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China

    Xinxin Chen, Jifei Yang, Yanhong Ji, Bin Liu, Xiaoyang Li, Hong Yin & Qiyun Zhu

  2. Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China

    Hong Yin

  3. International Livestock Research Institute, Nairobi, 00100, Kenya

    Edward Okoth

Authors
  1. Xinxin Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jifei Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Yanhong Ji
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Edward Okoth
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Bin Liu
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Xiaoyang Li
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Hong Yin
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Qiyun Zhu
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding authors

Correspondence to Hong Yin or Qiyun Zhu.

Additional information

These authors contributed equally to this work.

ORCID: 0000-0001-6404-7965

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yang, J., Ji, Y. et al. Recombinant Newcastle disease virus expressing African swine fever virus protein 72 is safe and immunogenic in mice. Virol. Sin. 31, 150–159 (2016). https://doi.org/10.1007/s12250-015-3692-2

Download citation

  • Received: 28 November 2015

  • Accepted: 25 January 2016

  • Published: 11 March 2016

  • Issue Date: April 2016

  • DOI: https://doi.org/10.1007/s12250-015-3692-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • African swine fever virus
  • p72
  • Newcastle disease virus
  • vectored vaccine
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.200.168.16

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.