Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Characterization of influenza A virus pseudotyped with the spike protein of porcine epidemic diarrhea virus

22 August 2018

Asawin Wanitchang, Janya Saenboonrueng, … Anan Jongkaewwattana

Research progress on coronavirus S proteins and their receptors

28 March 2021

Yuan Hao-Wen & Hong-Ling Wen

PEDV enters cells through clathrin-, caveolae-, and lipid raft-mediated endocytosis and traffics via the endo-/lysosome pathway

10 February 2020

Xiaona Wei, Gaoli She, … Yongchang Cao

Coronavirus envelope protein: current knowledge

27 May 2019

Dewald Schoeman & Burtram C. Fielding

Three kinds of treatment with Homoharringtonine, Hydroxychloroquine or shRNA and their combination against coronavirus PEDV in vitro

03 June 2020

Cui-Cui Li & Xiao-Jia Wang

A comparative study of human betacoronavirus spike proteins: structure, function and therapeutics

22 January 2021

Jyoti Verma & Naidu Subbarao

COVID-19: Myths and Reality

08 July 2021

Larisa V. Kordyukova & Andrey V. Shanko

Trypsin enhances SARS-CoV-2 infection by facilitating viral entry

26 January 2022

Yeeun Kim, Guehwan Jang, … Changhee Lee

Porcine transmissible gastroenteritis virus inhibits NF-κB activity via nonstructural protein 3 to evade host immune system

05 August 2019

Yanan Wang, Aoying Sun, … Li Wang

Download PDF
  • Research Article
  • Published: 19 February 2016

Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses

  • Jingjing Wang1,2,
  • Feng Deng1,2,
  • Gang Ye1,2,
  • Wanyu Dong1,2,
  • Anjun Zheng1,2,
  • Qigai He1,2,3 &
  • …
  • Guiqing Peng1,2,3 

Virologica Sinica volume 31, pages 49–56 (2016)Cite this article

  • 1382 Accesses

  • 16 Citations

  • 1 Altmetric

  • Metrics details

Abstract

The surface glycoproteins of coronaviruses play an important role in receptor binding and cell entry. Different coronaviruses interact with their specific receptors to enter host cells. Lentiviruses pseudotyped with their spike proteins (S) were compared to analyze the entry efficiency of various coronaviruses. Our results indicated that S proteins from different coronaviruses displayed varied abilities to mediate pseudotyped virus infection. Furthermore, the cell tropisms of porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been characterized by live and pseudotyped viruses. Both live and pseudoviruses could infected Vero- CCL-81 (monkey kidney), Huh-7 (human liver), and PK-15 (pig kidney) cells efficiently. CCL94 (cat kidney) cells could be infected efficiently by TGEV but not PEDV. Overall, our study provides new insights into the mechanisms of viral entry and forms a basis for antiviral drug screening.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4: 1011–1033.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. 2003. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol, 77: 8801–8811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cavanagh D, Davis PJ. 1986. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol, 67: 1443–1448.

    Article  CAS  PubMed  Google Scholar 

  • de Haan CAM, Li Z, Lintelo ET, Bosch BJ, Haijema BJ, Rottier PJM. 2005. Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol, 79: 14451–14456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dveksler GS, Pensiero MN, Cardellichio CB, Williams RK, Jiang GS, Holmes KV, Dieffenbach CW. 1991. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol, 65: 6881–6891.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heald-Sargent T, Gallagher T. 2012. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 4: 557–580.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kang YX, Wu ZW, Lau TCK, Lu XF, Liu L, Cheung AKL, Tan ZW, Ng J, Liang JG, Wang HB, Li SK, Zheng BJ, Li B, Chen L, Chen ZW. 2012. CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem, 287: 16499–16509.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krempl C, Schultze B, Laude H, Herrler G. 1997. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol, 71: 3285–3287.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Li BX, Ge JW, Li YJ. 2007. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology, 365: 166–172.

    Article  CAS  PubMed  Google Scholar 

  • Li F. 2013. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res, 100: 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol, 89: 1954–1964.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309: 1864–1868.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F. 2015. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol, 89: 6121–6125.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu X, Liu L, Zhang X, Lau TC, Tsui SK, Kang Y, Zheng P, Zheng B, Liu G, Chen Z. 2012. F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis. Antimicrob Agents Chemother, 56: 341–351.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nam E, Lee C. 2010. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet Microbiol, 144: 41–50.

    Article  CAS  PubMed  Google Scholar 

  • Peng GQ, Sun DW, Rajashankar KR, Qian ZH, Holmes KV, Li F. 2011. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proceed Nat Acad Sci USA, 108: 10696–10701.

    Article  CAS  Google Scholar 

  • Peng GQ, Xu LQ, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F. 2012. Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem, 287: 41931–41938.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 7: 439–450.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. 2012. Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies. Plos Pathogens, 8: e1002859.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schwegmann-Wessels C, Glende J, Ren XF, Qu XX, Deng HK, Enjuanes L, Herrler G. 2009. Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus. J Gen Virol, 90: 1724–1729.

    Article  CAS  PubMed  Google Scholar 

  • Shahwan K, Hesse M, Mork AK, Herrler G, Winter C. 2013. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1) Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus. Viruses-Basel, 5: 1924–1933.

    Article  CAS  Google Scholar 

  • Tang DJ, Lam YM, Siu YL, Lam CH, Chu SL, Peiris JSM, Buchy P, Nal B, Bruzzone R. 2012. A Single Residue Substitution in the Receptor-Binding Domain of H5N1 Hemagglutinin Is Critical for Packaging into Pseudotyped Lentiviral Particles. Plos One, 7: e43596.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tusell SM, Schittone SA, Holmes KV. 2007. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol, 81: 1261–1273.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu KL, Chen L, Peng GQ, Zhou WB, Pennell CA, Mansky LM, Geraghty RJ, Li F. 2011. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J Virol, 85: 5331–5337.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China

    Jingjing Wang, Feng Deng, Gang Ye, Wanyu Dong, Anjun Zheng, Qigai He & Guiqing Peng

  2. College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China

    Jingjing Wang, Feng Deng, Gang Ye, Wanyu Dong, Anjun Zheng, Qigai He & Guiqing Peng

  3. The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China

    Qigai He & Guiqing Peng

Authors
  1. Jingjing Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Feng Deng
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gang Ye
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Wanyu Dong
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Anjun Zheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Qigai He
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Guiqing Peng
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Guiqing Peng.

Additional information

ORCID: 0000-0001-5419-2499

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, F., Ye, G. et al. Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses. Virol. Sin. 31, 49–56 (2016). https://doi.org/10.1007/s12250-015-3690-4

Download citation

  • Received: 26 November 2015

  • Accepted: 28 January 2016

  • Published: 19 February 2016

  • Issue Date: February 2016

  • DOI: https://doi.org/10.1007/s12250-015-3690-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Coronavirus
  • spike proteins
  • receptor binding
  • cell entry
  • pseudotyped virus
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 44.201.94.236

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.