Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses

Abstract

The surface glycoproteins of coronaviruses play an important role in receptor binding and cell entry. Different coronaviruses interact with their specific receptors to enter host cells. Lentiviruses pseudotyped with their spike proteins (S) were compared to analyze the entry efficiency of various coronaviruses. Our results indicated that S proteins from different coronaviruses displayed varied abilities to mediate pseudotyped virus infection. Furthermore, the cell tropisms of porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been characterized by live and pseudotyped viruses. Both live and pseudoviruses could infected Vero- CCL-81 (monkey kidney), Huh-7 (human liver), and PK-15 (pig kidney) cells efficiently. CCL94 (cat kidney) cells could be infected efficiently by TGEV but not PEDV. Overall, our study provides new insights into the mechanisms of viral entry and forms a basis for antiviral drug screening.

References

  1. Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4: 1011–1033.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  2. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. 2003. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol, 77: 8801–8811.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  3. Cavanagh D, Davis PJ. 1986. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol, 67: 1443–1448.

    Article  CAS  PubMed  Google Scholar 

  4. de Haan CAM, Li Z, Lintelo ET, Bosch BJ, Haijema BJ, Rottier PJM. 2005. Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol, 79: 14451–14456.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  5. Dveksler GS, Pensiero MN, Cardellichio CB, Williams RK, Jiang GS, Holmes KV, Dieffenbach CW. 1991. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol, 65: 6881–6891.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Heald-Sargent T, Gallagher T. 2012. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 4: 557–580.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  7. Kang YX, Wu ZW, Lau TCK, Lu XF, Liu L, Cheung AKL, Tan ZW, Ng J, Liang JG, Wang HB, Li SK, Zheng BJ, Li B, Chen L, Chen ZW. 2012. CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem, 287: 16499–16509.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  8. Krempl C, Schultze B, Laude H, Herrler G. 1997. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol, 71: 3285–3287.

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Li BX, Ge JW, Li YJ. 2007. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology, 365: 166–172.

    Article  CAS  PubMed  Google Scholar 

  10. Li F. 2013. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res, 100: 246–254.

    Article  CAS  PubMed  Google Scholar 

  11. Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol, 89: 1954–1964.

    PubMed Central  Article  PubMed  Google Scholar 

  12. Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309: 1864–1868.

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F. 2015. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol, 89: 6121–6125.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  14. Lu X, Liu L, Zhang X, Lau TC, Tsui SK, Kang Y, Zheng P, Zheng B, Liu G, Chen Z. 2012. F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis. Antimicrob Agents Chemother, 56: 341–351.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  15. Nam E, Lee C. 2010. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet Microbiol, 144: 41–50.

    Article  CAS  PubMed  Google Scholar 

  16. Peng GQ, Sun DW, Rajashankar KR, Qian ZH, Holmes KV, Li F. 2011. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proceed Nat Acad Sci USA, 108: 10696–10701.

    Article  CAS  Google Scholar 

  17. Peng GQ, Xu LQ, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F. 2012. Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem, 287: 41931–41938.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  18. Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 7: 439–450.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  19. Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. 2012. Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies. Plos Pathogens, 8: e1002859.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  20. Schwegmann-Wessels C, Glende J, Ren XF, Qu XX, Deng HK, Enjuanes L, Herrler G. 2009. Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus. J Gen Virol, 90: 1724–1729.

    Article  CAS  PubMed  Google Scholar 

  21. Shahwan K, Hesse M, Mork AK, Herrler G, Winter C. 2013. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1) Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus. Viruses-Basel, 5: 1924–1933.

    Article  CAS  Google Scholar 

  22. Tang DJ, Lam YM, Siu YL, Lam CH, Chu SL, Peiris JSM, Buchy P, Nal B, Bruzzone R. 2012. A Single Residue Substitution in the Receptor-Binding Domain of H5N1 Hemagglutinin Is Critical for Packaging into Pseudotyped Lentiviral Particles. Plos One, 7: e43596.

    PubMed Central  Article  PubMed  Google Scholar 

  23. Tusell SM, Schittone SA, Holmes KV. 2007. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol, 81: 1261–1273.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  24. Wu KL, Chen L, Peng GQ, Zhou WB, Pennell CA, Mansky LM, Geraghty RJ, Li F. 2011. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J Virol, 85: 5331–5337.

    PubMed Central  Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guiqing Peng.

Additional information

ORCID: 0000-0001-5419-2499

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Deng, F., Ye, G. et al. Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses. Virol. Sin. 31, 49–56 (2016). https://doi.org/10.1007/s12250-015-3690-4

Download citation

Keywords

  • Coronavirus
  • spike proteins
  • receptor binding
  • cell entry
  • pseudotyped virus