Advertisement

Virologica Sinica

, Volume 31, Issue 1, pp 49–56 | Cite as

Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses

  • Jingjing Wang
  • Feng Deng
  • Gang Ye
  • Wanyu Dong
  • Anjun Zheng
  • Qigai He
  • Guiqing Peng
Research Article

Abstract

The surface glycoproteins of coronaviruses play an important role in receptor binding and cell entry. Different coronaviruses interact with their specific receptors to enter host cells. Lentiviruses pseudotyped with their spike proteins (S) were compared to analyze the entry efficiency of various coronaviruses. Our results indicated that S proteins from different coronaviruses displayed varied abilities to mediate pseudotyped virus infection. Furthermore, the cell tropisms of porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been characterized by live and pseudotyped viruses. Both live and pseudoviruses could infected Vero- CCL-81 (monkey kidney), Huh-7 (human liver), and PK-15 (pig kidney) cells efficiently. CCL94 (cat kidney) cells could be infected efficiently by TGEV but not PEDV. Overall, our study provides new insights into the mechanisms of viral entry and forms a basis for antiviral drug screening.

Keywords

Coronavirus spike proteins receptor binding cell entry pseudotyped virus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belouzard S, Millet JK, Licitra BN, Whittaker GR. 2012. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 4: 1011–1033.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. 2003. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol, 77: 8801–8811.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Cavanagh D, Davis PJ. 1986. Coronavirus IBV: removal of spike glycopolypeptide S1 by urea abolishes infectivity and haemagglutination but not attachment to cells. J Gen Virol, 67: 1443–1448.CrossRefPubMedGoogle Scholar
  4. de Haan CAM, Li Z, Lintelo ET, Bosch BJ, Haijema BJ, Rottier PJM. 2005. Murine coronavirus with an extended host range uses heparan sulfate as an entry receptor. J Virol, 79: 14451–14456.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Dveksler GS, Pensiero MN, Cardellichio CB, Williams RK, Jiang GS, Holmes KV, Dieffenbach CW. 1991. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J Virol, 65: 6881–6891.PubMedCentralPubMedGoogle Scholar
  6. Heald-Sargent T, Gallagher T. 2012. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses, 4: 557–580.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Kang YX, Wu ZW, Lau TCK, Lu XF, Liu L, Cheung AKL, Tan ZW, Ng J, Liang JG, Wang HB, Li SK, Zheng BJ, Li B, Chen L, Chen ZW. 2012. CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem, 287: 16499–16509.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Krempl C, Schultze B, Laude H, Herrler G. 1997. Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol, 71: 3285–3287.PubMedCentralPubMedGoogle Scholar
  9. Li BX, Ge JW, Li YJ. 2007. Porcine aminopeptidase N is a functional receptor for the PEDV coronavirus. Virology, 365: 166–172.CrossRefPubMedGoogle Scholar
  10. Li F. 2013. Receptor recognition and cross-species infections of SARS coronavirus. Antiviral Res, 100: 246–254.CrossRefPubMedGoogle Scholar
  11. Li F. 2015. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol, 89: 1954–1964.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Li F, Li WH, Farzan M, Harrison SC. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309: 1864–1868.CrossRefPubMedGoogle Scholar
  13. Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F. 2015. Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol, 89: 6121–6125.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Lu X, Liu L, Zhang X, Lau TC, Tsui SK, Kang Y, Zheng P, Zheng B, Liu G, Chen Z. 2012. F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis. Antimicrob Agents Chemother, 56: 341–351.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Nam E, Lee C. 2010. Contribution of the porcine aminopeptidase N (CD13) receptor density to porcine epidemic diarrhea virus infection. Vet Microbiol, 144: 41–50.CrossRefPubMedGoogle Scholar
  16. Peng GQ, Sun DW, Rajashankar KR, Qian ZH, Holmes KV, Li F. 2011. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proceed Nat Acad Sci USA, 108: 10696–10701.CrossRefGoogle Scholar
  17. Peng GQ, Xu LQ, Lin YL, Chen L, Pasquarella JR, Holmes KV, Li F. 2012. Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem, 287: 41931–41938.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Perlman S, Netland J. 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol, 7: 439–450.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. 2012. Structural Bases of Coronavirus Attachment to Host Aminopeptidase N and Its Inhibition by Neutralizing Antibodies. Plos Pathogens, 8: e1002859.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Schwegmann-Wessels C, Glende J, Ren XF, Qu XX, Deng HK, Enjuanes L, Herrler G. 2009. Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus. J Gen Virol, 90: 1724–1729.CrossRefPubMedGoogle Scholar
  21. Shahwan K, Hesse M, Mork AK, Herrler G, Winter C. 2013. Sialic Acid Binding Properties of Soluble Coronavirus Spike (S1) Proteins: Differences between Infectious Bronchitis Virus and Transmissible Gastroenteritis Virus. Viruses-Basel, 5: 1924–1933.CrossRefGoogle Scholar
  22. Tang DJ, Lam YM, Siu YL, Lam CH, Chu SL, Peiris JSM, Buchy P, Nal B, Bruzzone R. 2012. A Single Residue Substitution in the Receptor-Binding Domain of H5N1 Hemagglutinin Is Critical for Packaging into Pseudotyped Lentiviral Particles. Plos One, 7: e43596.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Tusell SM, Schittone SA, Holmes KV. 2007. Mutational analysis of aminopeptidase N, a receptor for several group 1 coronaviruses, identifies key determinants of viral host range. J Virol, 81: 1261–1273.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Wu KL, Chen L, Peng GQ, Zhou WB, Pennell CA, Mansky LM, Geraghty RJ, Li F. 2011. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J Virol, 85: 5331–5337.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Jingjing Wang
    • 1
    • 2
  • Feng Deng
    • 1
    • 2
  • Gang Ye
    • 1
    • 2
  • Wanyu Dong
    • 1
    • 2
  • Anjun Zheng
    • 1
    • 2
  • Qigai He
    • 1
    • 2
    • 3
  • Guiqing Peng
    • 1
    • 2
    • 3
  1. 1.State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
  2. 2.College of Veterinary MedicineHuazhong Agricultural UniversityWuhanChina
  3. 3.The Cooperative Innovation Center for Sustainable Pig ProductionHuazhong Agricultural UniversityWuhanChina

Personalised recommendations