Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
A molecular arms race between host innate antiviral response and emerging human coronaviruses
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

A comparative review of pathogenesis and host innate immunity evasion strategies among the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV)

07 March 2021

Rashed Noor

The roles of signaling pathways in SARS-CoV-2 infection; lessons learned from SARS-CoV and MERS-CoV

18 January 2021

Nima Hemmat, Zahra Asadzadeh, … Behzad Baradaran

The immune system view of the coronavirus SARS-CoV-2

29 December 2020

Ivana Celardo, Luigia Pace, … Vincenzo Barnaba

A contemporary review on pathogenesis and immunity of COVID-19 infection

29 June 2020

Rasoul Mirzaei, Sajad Karampoor, … Faezeh Ghasemi

Coronavirus: a shift in focus away from IFN response and towards other inflammatory targets

07 September 2020

Akshaya Thoutam, Mason Breitzig, … Narasaiah Kolliputi

Innate immune recognition against SARS-CoV-2

26 January 2023

Taisho Yamada & Akinori Takaoka

Severe Acute Respiratory Syndrome Coronavirus 2: The Role of the Main Components of the Innate Immune System

15 September 2021

Akbar Anaeigoudari, Hamid Reza Mollaei, … Reza Nosratabadi

Immunologic aspects of characteristics, diagnosis, and treatment of coronavirus disease 2019 (COVID-19)

04 June 2020

Feng-Yee Chang, Hsiang-Cheng Chen, … Huey-Kang Sytwu

Molecular mechanism, diagnosis, and potential treatment for novel coronavirus (COVID-19): a current literature review and perspective

25 January 2021

Yashwant Kumar Ratre, Namrata Kahar, … Henu Kumar Verma

Download PDF
  • Review
  • Published: 15 January 2016

A molecular arms race between host innate antiviral response and emerging human coronaviruses

  • Lok-Yin Roy Wong1,
  • Pak-Yin Lui1 &
  • Dong-Yan Jin1 

Virologica Sinica volume 31, pages 12–23 (2016)Cite this article

  • 1760 Accesses

  • 35 Citations

  • 17 Altmetric

  • Metrics details

Abstract

Coronaviruses have been closely related with mankind for thousands of years. Communityacquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Almazán F, DeDiego ML, Galán C, Escors D, álvarez E, Ortego J, Sola I, Zuniga S, Alonso S, Moreno JL, Nogales A, Capiscol C, Enjuanes L. 2006. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol, 80: 10900–10906.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Almazán F, DeDiego ML, Sola I, Zuñiga S, Nieto-Torres JL, Marquez- Jurado S, Andrés G, Enjuanes L. 2013. Engineering a replication- competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio, 4: 00650–13.

    Article  CAS  Google Scholar 

  • Almazán, F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes, L. 2014. Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res, 189: 262–270.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Báez-Santos YM, Mielech AM, Deng X, Baker S, Mesecar AD. 2014. Catalytic function and substrate specificity of the papainlike protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J Virol, 88: 12511–12527.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Berke IC, Yu X, Modis Y, Egelman EH. 2012. MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci USA, 109: 18437–18441.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boehme KW, Compton T. 2004. Innate sensing of viruses by Tolllike receptors. J Virol, 78: 7867–7873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol, 77: 8801–8811.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradburne AF, Bynoe ML, Tyrrell DA. 1967. Effects of a “new” human respiratory virus in volunteers. Br Med J, 3: 767–769.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruns AM, Leser GP, Lamb RA, Horvath CM. 2014. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol Cell, 55: 771–781.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, Pelkmans L, Rottier PJM, Bosch BJ, de Haan CAM. 2014. Coronavirus cell entry occurs through the endo-lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog, 10: e1004502.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. 2006. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol, 80: 9279–9287.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chan JF, To KK, Tse H, Jin DY, Yuen KY. 2013. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol, 21: 544–555.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106: 3484–3489.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Rajashankar KR, YangY, Agnihothram SS, Liu C, Lin YL, Baric RS, Li F. 2013. Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus. J Virol, 87: 10777–10783.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, Wu A, Sun Y, Yang Z, Tien P, Ahola T, Liang Y, Liu X, Guo D. 2011. Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex. PLoS Pathog, 7: e1002294.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng VCC, Lau SKP, Woo PCY, Yuen KY. 2007. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev, 20: 660–694.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK, Li K, Mesecar AD, Baker SC. 2010. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol, 84: 4619–4629.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A, Owusu M, Nkrumah EE, Maganga GD, Oppong S, Adu-Sarkodie Y, Vallo P, da Silva Filho LVRF, Leroy EM, Thiel V, van der Hoek L, Poon LLM, Tschapka CD, Drexler JF. 2015. Evidence for an ancestral association of human coronavirus 229E with bats. J Virol, 89: 11858–11870.

    Article  PubMed  Google Scholar 

  • Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S, Zust R, Dong H, Thiel V, Pierson TC, Muller RM, Gale MJ, Shi PY, Diamond MS. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468: 452–456.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard, B. 2011. Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-OMethyltransferase nsp10/nsp16 Complex. PLoS Pathog, 7: 1002059.

    Article  CAS  Google Scholar 

  • de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RAM, Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LLM, Snijder EJ, Stephens GM, Woo PCY, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol, 87: 7790–7792.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Durai P, Batool M, Shah M, Choi S. 2015. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med, 47: e181.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falzarano D, de WitE, Martellaro C, Callison J, Munster VJ, Feldmann H. 2013. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep, 3: 1686.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti P, Martinez L, Dubucquoi S, Dessein R, Gosset P, Mathieu D, Guery B. 2014. Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? PLoS ONE, 9: e88716.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ford E, Thanos D. 2010. The transcriptional code of human IFN-β gene expression. Biochim Biophys Acta, 1799: 328–336.

    Article  CAS  PubMed  Google Scholar 

  • Fouchier RAM, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus ADME. 2004. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA, 101: 6212–6216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frieman M, Heise M, Baric R. 2008. SARS coronavirus and innate immunity. Virus Res, 133: 101–112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Frieman MB, Chen J, Morrison TE, Whitmore A, Funkhouser W, Ward JM, Lamirande EW, Roberts A, Heise M, Subbarao K, Baric RS. 2010. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog, 6: e1000849.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fung TS, Huang M, Liu DX. 2014. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res, 194: 110–123.

    Article  CAS  PubMed  Google Scholar 

  • Graham R, Donaldson EF, Baric RS. 2013. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 11: 836–848.

    Article  CAS  PubMed  Google Scholar 

  • Gusho E, Zhang R, Jha BK, Thornbrough JM, Dong B, Gaughan C, Elliott R, Weiss SR, Silverman RH. 2014. Murine AKAP7 has a 2′, 5′-phosphodiesterase domain that can complement an inactive murine coronavirus ns2 gene. MBio, 5: e01312–14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med, 121: 190–193.

    Article  CAS  PubMed  Google Scholar 

  • Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157: 1262–1278.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. 2011. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog, 7: e1002433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huynh J, Li S, Yount B, Smith A, Sturges L, Olsen JC, Nagel J, Johnson JB, Ggnihothram S, Gates JE, Frieman MB, Baric RS, Donaldson EF. 2012. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol, 86: 12816–12825.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nature Rev Immunol, 14: 36–49.

    Article  CAS  Google Scholar 

  • Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M, Patel SS, Marcotrigiano J. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 479: 423–427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 11: 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M. 2015. Pathogen-associated molecular pattern recognition of hepatitis C virus transmitted/founder variants by RIG-I is dependent on U-core length. J Virol, 89: 11056–11068.

    Article  CAS  PubMed  Google Scholar 

  • Kindler E, Jónsdóttir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, Geffers R, Fouchier RAM, Drosten C, Muller MA, Dijkman R, Thiel V. 2013. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio, 4: e00611.12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol, 81: 548–557.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kowalinski E, Lunardi T, McCarthy Andrew A, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell, 147: 423–435.

    Article  CAS  PubMed  Google Scholar 

  • Lau SKP, Woo PCY, Yip CCY, Tse H, Tsoi H, Cheng VCC, Lee P, Tang BSF, Cheung CHY, Lee RA, So LY, Lau YL, Chan KH, Yuen KY. 2006. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol, 44: 2063–2071.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Levy DE, Garcia-Sastre A. 2001. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev, 12: 143–156.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Liu Y, Zhang X. 2010. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol, 84: 6472–6482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426: 450–454.

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Park HS, Pyo HM, Liu Q, Zhou Y. 2015b. Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction. J Virol, 89: 6067–6079.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. 2015a. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347: 6227.

    Google Scholar 

  • Lokugamage KG, Narayanan K, Nakagawa K, Terasaki K, Ramirez SI, Tseng CTK, Makino S. 2015. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J Virol, 89: 10970–10981.

    Article  CAS  PubMed  Google Scholar 

  • Loo YM, Gale M. 2011. Immune signaling by RIG-I-like receptors. Immunity, 34: 680–692.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu X, Pan J, Tao J, Guo D. 2011. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 42: 37–45.

    Article  CAS  PubMed  Google Scholar 

  • Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. 2011. Structural insights into RNA recognition by RIG-I. Cell, 147: 409–422.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma F, Li B, Liu SY, Iyer SS, Yu Y, Wu A, Cheng G. 2015a. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J Immunol, 194: 1545–1554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ma F, Li B, Yu Y, Iyer SS, Sun M, Cheng G. 2015b. Positive feedback regulation of type I interferon by the interferonstimulated gene STING. EMBO Rep, 16: 202–212.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. 2014. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol, 4: 874–882.

    Article  CAS  Google Scholar 

  • Mazaleuskaya L, Veltrop R, Ikpeze N, Martin-Garcia J, Navas-Martin S. 2012. Protective role of Toll-like receptor 3-induced type I interferon in murine coronavirus infection of macrophages. Viruses, 4: 901–923.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA, 57: 933–940.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, AlHakeem R, Durosinloun A, Asmari MA, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah AA, Lipkin WI. 2013. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis, 19: 1819–1823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Menachery VD, Debbink K, Baric RS. 2014a. Coronavirus nonstructural protein 16: Evasion, attenuation, and possible treat-ments. Virus Res, 194: 191–199.

    Article  CAS  PubMed  Google Scholar 

  • Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S, Fan S, Li C, Neumann G, Tilton SC, Chang J, Gralinski LE, Long CG, Richard WCM, Weiss J, Matzke MM, Webb-Robertson BJ, Schepmoes AA, Shukla AK, Metz TO, Smith RD, Waters KM, Katze MG, Kawaoka Y, Baric RS. 2014b. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. MBio, 5: e01174.14.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Menachery VD, Yount, BL, Josset, L, Gralinski LE, Scobey T, Agnihothram S, Katze MG, Baric RS. 2014c. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-O-methyltransferase activity. J Virol, 88: 4251–4264.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. 2014. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology, 450–451: 64–70.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CTK, Makino S. 2008a. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol, 82: 4471–4479.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Narayanan K, Huang C, Makino S. 2008b. SARS coronavirus accessory proteins. Virus Res, 133: 113–121.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neuman BW, Chamberlain P, Bowden F, Joseph J. 2014. Atlas of coronavirus replicase structure. Virus Res, 194: 49–66.

    Article  CAS  PubMed  Google Scholar 

  • Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, SulimanT, Barchet W, Weber F, Drosten C, Müller MA. 2013. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol, 87: 12489–12495.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, Almakhlafi GA, Albarrak MM, Memish ZA, Albarrak AM. 2014. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis, 14: 1090–1095.

    Article  CAS  PubMed  Google Scholar 

  • Peisley A, Wu B, Yao H, Walz T, Hur S. 2013. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell, 51: 573–583.

    Article  CAS  PubMed  Google Scholar 

  • Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO. 2010. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol, 8: 802–813.

    Article  CAS  PubMed  Google Scholar 

  • Perlman S, Zhao J. 2013. Human coronavirus EMC is not the same as severe acute respiratory syndrome coronavirus. MBio, 4: e00002–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pyrc K, Berkhout B, van der Hoek L. 2007. The novel human coronaviruses NL63 and HKU1. J Virol, 81: 3051–3057.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Raj VS, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottire PJM, Osterhaus ADME, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495: 251–254.

    Article  CAS  PubMed  Google Scholar 

  • Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Peñaranda S, Bankamo B, Maher K, Chen MH, Ton SX, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TCT, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus ADME, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300: 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  • Samuel CE. 1991. Antiviral actions of interferon interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology, 183: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Samuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev, 14: 778–809.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujuta T, Akira S, Takeuchi O. 2010. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA, 107: 1512–1517.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M. 2008. Innate immunity induced by composition-dependent RIG-I recognition of Hepatitis C virus RNA. Nature, 454: 523–527.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 32: 513–545.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schoggins, JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 505: 691–695.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, MenacheryVD, Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS. 2013. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA, 110: 16157–16162.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. 2014. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res, 194: 90–99.

    Article  CAS  PubMed  Google Scholar 

  • Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol, 87: 12552–12561.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siu KL, Chan CP, Kok KH, Woo PCY, Jin DY. 2014a. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol, 11: 141–149.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siu KL, Chan CP, Kok KH, Woo PC, Jin DY. 2014b. Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1. Cell Biosci, 4: 3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Siu KL, Kok KH, Ng MHJ, Poon VKM, Yuen, KY, Zheng BJ, Jin DY. 2009. Severe acute respiratory syndrome coronavirus m protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKK complex. J Biol Chem, 284: 16202–16209.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, Chan CP, Tse H, Woo PCY, Yuen KY, Jin DY. 2014c. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses pact-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol, 88: 4866–4876.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T. 2003. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature, 424: 516–523.

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. 2012. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol, 86: 11128–11137.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, HeiseMT, Baric RS. 2015. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio, 6: 00638–15.

    Google Scholar 

  • Tyrrell DAJ, Bynoe ML. 1965. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J, 1: 1467–1470.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJM, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B. 2004. Identification of a new human coronavirus. Nat Med, 10: 368–373.

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D. 2015. Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J Virol, 89: 8416–8427.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, Weber F. 2013. Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe, 13: 336–346.

    Article  CAS  PubMed  Google Scholar 

  • Woo PCY, La, SKP, Chu C, Chan K, Tsoi H, Huang Y, Wong BHK, Poon RWS, Cai JJ, Luk WK, Poon LLM, Wong SSY, Guan Y, Peiris JSM, Yuen KY. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol, 79: 884–895.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woo PCY, Lau SKP, Huang Y, Yuen KY. 2009. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood), 234: 1117–1127.

    Article  CAS  Google Scholar 

  • Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, Zheng BJ, Chan KH, Yuen KY. 2012. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol, 86: 3995–4008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 152: 276–289.

    Article  CAS  PubMed  Google Scholar 

  • Wu B, Peisley A, Tetrault D, Li Z, Egelman EH, Magor KE, Walz T, Penczek PA, Hur S. 2014. Molecular imprinting as a signalactivation mechanism of the viral RNA sensor RIG-I. Mol Cell, 55: 511–523.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xagorari A, Chlichlia K. 2008. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J, 2: 49–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, Tan W. 2015. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep, 5: 17554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, Zhao Z, Tan W. 2013. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell, 4: 951–961.

    Article  CAS  PubMed  Google Scholar 

  • Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 357: 420–422.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol, 175: 2851–2858.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNAinduced innate antiviral responses. Nat Immunol, 5: 730–737.

    Article  CAS  PubMed  Google Scholar 

  • Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS. 2003. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA, 100: 12995–13000.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuen KS, Chan CP, Wong NHM, Ho CH, Ho TH, Lei T, Deng W, Tsao SW, Chen H, Kok KH, Jin DY. 2015. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol, 96: 626–636.

    Article  CAS  PubMed  Google Scholar 

  • Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 367: 1814–1820.

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Jha BK, Ogden KM, Dong B, Zhao L, Elliott R, Patton JT, Silverman RH, Weiss SR. 2013. Homologous 2′, 5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc Natl Acad Sci USA, 110: 13114–13119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao L, Jha BK, Wu A, Elliott R, Ziebuhr J, Gorbalenya AE, Silverman RH, Weiss SR. 2012. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe, 11: 607–616.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhong Y, Tan YW, Liu DX. 2012. Recent progress in studies of arterivirus- and coronavirus-host interactions. Viruses, 4: 980–1010.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zornetzer GA, Frieman MB, Rosenzweig E, Korth MJ, Page C, Baric RS, Katze MG. 2010. Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol, 84: 11297–11309.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. 2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12: 137–143.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China

    Lok-Yin Roy Wong, Pak-Yin Lui & Dong-Yan Jin

Authors
  1. Lok-Yin Roy Wong
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Pak-Yin Lui
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Dong-Yan Jin
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Dong-Yan Jin.

Additional information

ORCID: 0000-0002-2778-3530

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, LY.R., Lui, PY. & Jin, DY. A molecular arms race between host innate antiviral response and emerging human coronaviruses. Virol. Sin. 31, 12–23 (2016). https://doi.org/10.1007/s12250-015-3683-3

Download citation

  • Received: 21 November 2015

  • Accepted: 07 January 2016

  • Published: 15 January 2016

  • Issue Date: February 2016

  • DOI: https://doi.org/10.1007/s12250-015-3683-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • MERS-CoV
  • SARS-CoV
  • innate antiviral response
  • type I interferons
  • immune evasion
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.24.215

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.