A molecular arms race between host innate antiviral response and emerging human coronaviruses

Abstract

Coronaviruses have been closely related with mankind for thousands of years. Communityacquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

References

  1. Almazán F, DeDiego ML, Galán C, Escors D, álvarez E, Ortego J, Sola I, Zuniga S, Alonso S, Moreno JL, Nogales A, Capiscol C, Enjuanes L. 2006. Construction of a severe acute respiratory syndrome coronavirus infectious cDNA clone and a replicon to study coronavirus RNA synthesis. J Virol, 80: 10900–10906.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  2. Almazán F, DeDiego ML, Sola I, Zuñiga S, Nieto-Torres JL, Marquez- Jurado S, Andrés G, Enjuanes L. 2013. Engineering a replication- competent, propagation-defective Middle East respiratory syndrome coronavirus as a vaccine candidate. MBio, 4: 00650–13.

    Article  CAS  Google Scholar 

  3. Almazán, F, Sola I, Zuñiga S, Marquez-Jurado S, Morales L, Becares M, Enjuanes, L. 2014. Coronavirus reverse genetic systems: infectious clones and replicons. Virus Res, 189: 262–270.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  4. Báez-Santos YM, Mielech AM, Deng X, Baker S, Mesecar AD. 2014. Catalytic function and substrate specificity of the papainlike protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J Virol, 88: 12511–12527.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  5. Berke IC, Yu X, Modis Y, Egelman EH. 2012. MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci USA, 109: 18437–18441.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  6. Boehme KW, Compton T. 2004. Innate sensing of viruses by Tolllike receptors. J Virol, 78: 7867–7873.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  7. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. 2003. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol, 77: 8801–8811.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  8. Bradburne AF, Bynoe ML, Tyrrell DA. 1967. Effects of a “new” human respiratory virus in volunteers. Br Med J, 3: 767–769.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  9. Bruns AM, Leser GP, Lamb RA, Horvath CM. 2014. The innate immune sensor LGP2 activates antiviral signaling by regulating MDA5-RNA interaction and filament assembly. Mol Cell, 55: 771–781.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  10. Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, Pelkmans L, Rottier PJM, Bosch BJ, de Haan CAM. 2014. Coronavirus cell entry occurs through the endo-lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog, 10: e1004502.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  11. Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. 2006. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol, 80: 9279–9287.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  12. Chan JF, To KK, Tse H, Jin DY, Yuen KY. 2013. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol, 21: 544–555.

    CAS  PubMed  Article  Google Scholar 

  13. Chen Y, Cai H, Pan J, Xiang N, Tien P, Ahola T, Guo D. 2009. Functional screen reveals SARS coronavirus nonstructural protein nsp14 as a novel cap N7 methyltransferase. Proceedings of the National Academy of Sciences of the United States of America, 106: 3484–3489.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  14. Chen Y, Rajashankar KR, YangY, Agnihothram SS, Liu C, Lin YL, Baric RS, Li F. 2013. Crystal structure of the receptor-binding domain from newly emerged Middle East respiratory syndrome coronavirus. J Virol, 87: 10777–10783.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  15. Chen Y, Su C, Ke M, Jin X, Xu L, Zhang Z, Wu A, Sun Y, Yang Z, Tien P, Ahola T, Liang Y, Liu X, Guo D. 2011. Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex. PLoS Pathog, 7: e1002294.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  16. Cheng VCC, Lau SKP, Woo PCY, Yuen KY. 2007. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev, 20: 660–694.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  17. Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, Ratia K, Baez-Santos YM, Wang J, Takayama J, Ghosh AK, Li K, Mesecar AD, Baker SC. 2010. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J Virol, 84: 4619–4629.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  18. Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A, Owusu M, Nkrumah EE, Maganga GD, Oppong S, Adu-Sarkodie Y, Vallo P, da Silva Filho LVRF, Leroy EM, Thiel V, van der Hoek L, Poon LLM, Tschapka CD, Drexler JF. 2015. Evidence for an ancestral association of human coronavirus 229E with bats. J Virol, 89: 11858–11870.

    PubMed  Article  Google Scholar 

  19. Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, Errett J, Lin TY, Schneller S, Zust R, Dong H, Thiel V, Pierson TC, Muller RM, Gale MJ, Shi PY, Diamond MS. 2010. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 468: 452–456.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  20. Decroly E, Debarnot C, Ferron F, Bouvet M, Coutard B, Imbert I, Gluais L, Papageorgiou N, Sharff A, Bricogne G, Ortiz-Lombardia M, Lescar J, Canard, B. 2011. Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-OMethyltransferase nsp10/nsp16 Complex. PLoS Pathog, 7: 1002059.

    Article  CAS  Google Scholar 

  21. de Groot RJ, Baker SC, Baric RS, Brown CS, Drosten C, Enjuanes L, Fouchier RAM, Galiano M, Gorbalenya AE, Memish ZA, Perlman S, Poon LLM, Snijder EJ, Stephens GM, Woo PCY, Zaki AM, Zambon M, Ziebuhr J. 2013. Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the coronavirus study group. J Virol, 87: 7790–7792.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  22. Durai P, Batool M, Shah M, Choi S. 2015. Middle East respiratory syndrome coronavirus: transmission, virology and therapeutic targeting to aid in outbreak control. Exp Mol Med, 47: e181.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  23. Falzarano D, de WitE, Martellaro C, Callison J, Munster VJ, Feldmann H. 2013. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep, 3: 1686.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  24. Faure E, Poissy J, Goffard A, Fournier C, Kipnis E, Titecat M, Bortolotti P, Martinez L, Dubucquoi S, Dessein R, Gosset P, Mathieu D, Guery B. 2014. Distinct immune response in two MERS-CoV-infected patients: Can we go from bench to bedside? PLoS ONE, 9: e88716.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  25. Ford E, Thanos D. 2010. The transcriptional code of human IFN-β gene expression. Biochim Biophys Acta, 1799: 328–336.

    CAS  PubMed  Article  Google Scholar 

  26. Fouchier RAM, Hartwig NG, Bestebroer TM, Niemeyer B, de Jong JC, Simon JH, Osterhaus ADME. 2004. A previously undescribed coronavirus associated with respiratory disease in humans. Proc Natl Acad Sci USA, 101: 6212–6216.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  27. Frieman M, Heise M, Baric R. 2008. SARS coronavirus and innate immunity. Virus Res, 133: 101–112.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  28. Frieman MB, Chen J, Morrison TE, Whitmore A, Funkhouser W, Ward JM, Lamirande EW, Roberts A, Heise M, Subbarao K, Baric RS. 2010. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog, 6: e1000849.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  29. Fung TS, Huang M, Liu DX. 2014. Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions. Virus Res, 194: 110–123.

    CAS  PubMed  Article  Google Scholar 

  30. Graham R, Donaldson EF, Baric RS. 2013. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 11: 836–848.

    CAS  PubMed  Article  Google Scholar 

  31. Gusho E, Zhang R, Jha BK, Thornbrough JM, Dong B, Gaughan C, Elliott R, Weiss SR, Silverman RH. 2014. Murine AKAP7 has a 2′, 5′-phosphodiesterase domain that can complement an inactive murine coronavirus ns2 gene. MBio, 5: e01312–14.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  32. Hamre D, Procknow JJ. 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med, 121: 190–193.

    CAS  PubMed  Article  Google Scholar 

  33. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 157: 1262–1278.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  34. Huang C, Lokugamage KG, Rozovics JM, Narayanan K, Semler BL, Makino S. 2011. SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRNAs: Viral mRNAs are resistant to nsp1-induced RNA cleavage. PLoS Pathog, 7: e1002433.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  35. Huynh J, Li S, Yount B, Smith A, Sturges L, Olsen JC, Nagel J, Johnson JB, Ggnihothram S, Gates JE, Frieman MB, Baric RS, Donaldson EF. 2012. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J Virol, 86: 12816–12825.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  36. Ivashkiv LB, Donlin LT. 2014. Regulation of type I interferon responses. Nature Rev Immunol, 14: 36–49.

    CAS  Article  Google Scholar 

  37. Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M, Patel SS, Marcotrigiano J. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 479: 423–427.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  38. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol, 11: 373–384.

    CAS  PubMed  Article  Google Scholar 

  39. Kell A, Stoddard M, Li H, Marcotrigiano J, Shaw GM, Gale M. 2015. Pathogen-associated molecular pattern recognition of hepatitis C virus transmitted/founder variants by RIG-I is dependent on U-core length. J Virol, 89: 11056–11068.

    CAS  PubMed  Article  Google Scholar 

  40. Kindler E, Jónsdóttir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, Geffers R, Fouchier RAM, Drosten C, Muller MA, Dijkman R, Thiel V. 2013. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio, 4: e00611.12.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  41. Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (ORF) 3b, ORF 6, and nucleocapsid proteins function as interferon antagonists. J Virol, 81: 548–557.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  42. Kowalinski E, Lunardi T, McCarthy Andrew A, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell, 147: 423–435.

    CAS  PubMed  Article  Google Scholar 

  43. Lau SKP, Woo PCY, Yip CCY, Tse H, Tsoi H, Cheng VCC, Lee P, Tang BSF, Cheung CHY, Lee RA, So LY, Lau YL, Chan KH, Yuen KY. 2006. Coronavirus HKU1 and other coronavirus infections in Hong Kong. J Clin Microbiol, 44: 2063–2071.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  44. Levy DE, Garcia-Sastre A. 2001. The virus battles: IFN induction of the antiviral state and mechanisms of viral evasion. Cytokine Growth Factor Rev, 12: 143–156.

    CAS  PubMed  Article  Google Scholar 

  45. Li J, Liu Y, Zhang X. 2010. Murine coronavirus induces type I interferon in oligodendrocytes through recognition by RIG-I and MDA5. J Virol, 84: 6472–6482.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  46. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M. 2003. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 426: 450–454.

    CAS  PubMed  Article  Google Scholar 

  47. Liu G, Park HS, Pyo HM, Liu Q, Zhou Y. 2015b. Influenza A virus panhandle structure is directly involved in RIG-I activation and interferon induction. J Virol, 89: 6067–6079.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  48. Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. 2015a. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science, 347: 6227.

    Google Scholar 

  49. Lokugamage KG, Narayanan K, Nakagawa K, Terasaki K, Ramirez SI, Tseng CTK, Makino S. 2015. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mRNAs of cytoplasmic origin. J Virol, 89: 10970–10981.

    CAS  PubMed  Article  Google Scholar 

  50. Loo YM, Gale M. 2011. Immune signaling by RIG-I-like receptors. Immunity, 34: 680–692.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  51. Lu X, Pan J, Tao J, Guo D. 2011. SARS-CoV nucleocapsid protein antagonizes IFN-β response by targeting initial step of IFN-β induction pathway, and its C-terminal region is critical for the antagonism. Virus Genes, 42: 37–45.

    CAS  PubMed  Article  Google Scholar 

  52. Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. 2011. Structural insights into RNA recognition by RIG-I. Cell, 147: 409–422.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  53. Ma F, Li B, Liu SY, Iyer SS, Yu Y, Wu A, Cheng G. 2015a. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J Immunol, 194: 1545–1554.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  54. Ma F, Li B, Yu Y, Iyer SS, Sun M, Cheng G. 2015b. Positive feedback regulation of type I interferon by the interferonstimulated gene STING. EMBO Rep, 16: 202–212.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  55. Matthews KL, Coleman CM, van der Meer Y, Snijder EJ, Frieman MB. 2014. The ORF4b-encoded accessory proteins of Middle East respiratory syndrome coronavirus and two related bat coronaviruses localize to the nucleus and inhibit innate immune signalling. J Gen Virol, 4: 874–882.

    Article  CAS  Google Scholar 

  56. Mazaleuskaya L, Veltrop R, Ikpeze N, Martin-Garcia J, Navas-Martin S. 2012. Protective role of Toll-like receptor 3-induced type I interferon in murine coronavirus infection of macrophages. Viruses, 4: 901–923.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  57. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. 1967. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Natl Acad Sci USA, 57: 933–940.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  58. Memish ZA, Mishra N, Olival KJ, Fagbo SF, Kapoor V, Epstein JH, AlHakeem R, Durosinloun A, Asmari MA, Islam A, Kapoor A, Briese T, Daszak P, Al Rabeeah AA, Lipkin WI. 2013. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis, 19: 1819–1823.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  59. Menachery VD, Debbink K, Baric RS. 2014a. Coronavirus nonstructural protein 16: Evasion, attenuation, and possible treat-ments. Virus Res, 194: 191–199.

    CAS  PubMed  Article  Google Scholar 

  60. Menachery VD, Eisfeld AJ, Schäfer A, Josset L, Sims AC, Proll S, Fan S, Li C, Neumann G, Tilton SC, Chang J, Gralinski LE, Long CG, Richard WCM, Weiss J, Matzke MM, Webb-Robertson BJ, Schepmoes AA, Shukla AK, Metz TO, Smith RD, Waters KM, Katze MG, Kawaoka Y, Baric RS. 2014b. Pathogenic influenza viruses and coronaviruses utilize similar and contrasting approaches to control interferon-stimulated gene responses. MBio, 5: e01174.14.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  61. Menachery VD, Yount, BL, Josset, L, Gralinski LE, Scobey T, Agnihothram S, Katze MG, Baric RS. 2014c. Attenuation and restoration of severe acute respiratory syndrome coronavirus mutant lacking 2′-O-methyltransferase activity. J Virol, 88: 4251–4264.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  62. Mielech AM, Kilianski A, Baez-Santos YM, Mesecar AD, Baker SC. 2014. MERS-CoV papain-like protease has deISGylating and deubiquitinating activities. Virology, 450–451: 64–70.

    PubMed  Article  CAS  Google Scholar 

  63. Narayanan K, Huang C, Lokugamage K, Kamitani W, Ikegami T, Tseng CTK, Makino S. 2008a. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. J Virol, 82: 4471–4479.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  64. Narayanan K, Huang C, Makino S. 2008b. SARS coronavirus accessory proteins. Virus Res, 133: 113–121.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  65. Neuman BW, Chamberlain P, Bowden F, Joseph J. 2014. Atlas of coronavirus replicase structure. Virus Res, 194: 49–66.

    CAS  PubMed  Article  Google Scholar 

  66. Niemeyer D, Zillinger T, Muth D, Zielecki F, Horvath G, SulimanT, Barchet W, Weber F, Drosten C, Müller MA. 2013. Middle East respiratory syndrome coronavirus accessory protein 4a is a type I interferon antagonist. J Virol, 87: 12489–12495.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  67. Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, Almakhlafi GA, Albarrak MM, Memish ZA, Albarrak AM. 2014. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis, 14: 1090–1095.

    CAS  PubMed  Article  Google Scholar 

  68. Peisley A, Wu B, Yao H, Walz T, Hur S. 2013. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell, 51: 573–583.

    CAS  PubMed  Article  Google Scholar 

  69. Pepin KM, Lass S, Pulliam JRC, Read AF, Lloyd-Smith JO. 2010. Identifying genetic markers of adaptation for surveillance of viral host jumps. Nat Rev Microbiol, 8: 802–813.

    CAS  PubMed  Article  Google Scholar 

  70. Perlman S, Zhao J. 2013. Human coronavirus EMC is not the same as severe acute respiratory syndrome coronavirus. MBio, 4: e00002–13.

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Pyrc K, Berkhout B, van der Hoek L. 2007. The novel human coronaviruses NL63 and HKU1. J Virol, 81: 3051–3057.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  72. Raj VS, Mou H, Smits SL, Dekkers DHW, Muller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottire PJM, Osterhaus ADME, Bosch BJ, Haagmans BL. 2013. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 495: 251–254.

    CAS  PubMed  Article  Google Scholar 

  73. Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, Peñaranda S, Bankamo B, Maher K, Chen MH, Ton SX, Tamin A, Lowe L, Frace M, DeRisi JL, Chen Q, Wang D, Erdman DD, Peret TCT, Burns C, Ksiazek TG, Rollin PE, Sanchez A, Liffick S, Holloway B, Limor J, McCaustland K, Olsen-Rasmussen M, Fouchier R, Gunther S, Osterhaus ADME, Drosten C, Pallansch MA, Anderson LJ, Bellini WJ. 2003. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 300: 1394–1399.

    CAS  PubMed  Article  Google Scholar 

  74. Samuel CE. 1991. Antiviral actions of interferon interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology, 183: 1–11.

    CAS  PubMed  Article  Google Scholar 

  75. Samuel CE. 2001. Antiviral actions of interferons. Clin Microbiol Rev, 14: 778–809.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  76. Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, Matsushita K, Tsujimura T, Fujuta T, Akira S, Takeuchi O. 2010. LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses. Proc Natl Acad Sci USA, 107: 1512–1517.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  77. Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M. 2008. Innate immunity induced by composition-dependent RIG-I recognition of Hepatitis C virus RNA. Nature, 454: 523–527.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  78. Schneider WM, Chevillotte MD, Rice CM. 2014. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol, 32: 513–545.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  79. Schoggins, JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, García-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 505: 691–695.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  80. Scobey T, Yount BL, Sims AC, Donaldson EF, Agnihothram SS, MenacheryVD, Graham RL, Swanstrom J, Bove PF, Kim JD, Grego S, Randell SH, Baric RS. 2013. Reverse genetics with a full-length infectious cDNA of the Middle East respiratory syndrome coronavirus. Proc Natl Acad Sci USA, 110: 16157–16162.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  81. Sevajol M, Subissi L, Decroly E, Canard B, Imbert I. 2014. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus. Virus Res, 194: 90–99.

    CAS  PubMed  Article  Google Scholar 

  82. Shirato K, Kawase M, Matsuyama S. 2013. Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol, 87: 12552–12561.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  83. Siu KL, Chan CP, Kok KH, Woo PCY, Jin DY. 2014a. Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain. Cell Mol Immunol, 11: 141–149.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  84. Siu KL, Chan CP, Kok KH, Woo PC, Jin DY. 2014b. Comparative analysis of the activation of unfolded protein response by spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus HKU1. Cell Biosci, 4: 3.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  85. Siu KL, Kok KH, Ng MHJ, Poon VKM, Yuen, KY, Zheng BJ, Jin DY. 2009. Severe acute respiratory syndrome coronavirus m protein inhibits type I interferon production by impeding the formation of TRAF3·TANK·TBK1/IKK complex. J Biol Chem, 284: 16202–16209.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  86. Siu KL, Yeung ML, Kok KH, Yuen KS, Kew C, Lui PY, Chan CP, Tse H, Woo PCY, Yuen KY, Jin DY. 2014c. Middle East respiratory syndrome coronavirus 4a protein is a double-stranded RNA-binding protein that suppresses pact-induced activation of RIG-I and MDA5 in the innate antiviral response. J Virol, 88: 4866–4876.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

  87. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K, Taniguchi T. 2003. Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature, 424: 516–523.

    CAS  PubMed  Article  Google Scholar 

  88. Tanaka T, Kamitani W, DeDiego ML, Enjuanes L, Matsuura Y. 2012. Severe acute respiratory syndrome coronavirus nsp1 facilitates efficient propagation in cells through a specific translational shutoff of host mRNA. J Virol, 86: 11128–11137.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  89. Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, HeiseMT, Baric RS. 2015. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. MBio, 6: 00638–15.

    Google Scholar 

  90. Tyrrell DAJ, Bynoe ML. 1965. Cultivation of a novel type of common-cold virus in organ cultures. Br Med J, 1: 1467–1470.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  91. van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJM, Wolthers KC, Wertheim-van Dillen PME, Kaandorp J, Spaargaren J, Berkhout B. 2004. Identification of a new human coronavirus. Nat Med, 10: 368–373.

    CAS  PubMed  Article  Google Scholar 

  92. Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D. 2015. Coronavirus nsp10/nsp16 methyltransferase can be targeted by nsp10-derived peptide in vitro and in vivo to reduce replication and pathogenesis. J Virol, 89: 8416–8427.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  93. Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, Weber F. 2013. Incoming RNA virus nucleocapsids containing a 5′-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe, 13: 336–346.

    CAS  PubMed  Article  Google Scholar 

  94. Woo PCY, La, SKP, Chu C, Chan K, Tsoi H, Huang Y, Wong BHK, Poon RWS, Cai JJ, Luk WK, Poon LLM, Wong SSY, Guan Y, Peiris JSM, Yuen KY. 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol, 79: 884–895.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  95. Woo PCY, Lau SKP, Huang Y, Yuen KY. 2009. Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood), 234: 1117–1127.

    CAS  Article  Google Scholar 

  96. Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, Zheng BJ, Chan KH, Yuen KY. 2012. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol, 86: 3995–4008.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  97. Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell, 152: 276–289.

    CAS  PubMed  Article  Google Scholar 

  98. Wu B, Peisley A, Tetrault D, Li Z, Egelman EH, Magor KE, Walz T, Penczek PA, Hur S. 2014. Molecular imprinting as a signalactivation mechanism of the viral RNA sensor RIG-I. Mol Cell, 55: 511–523.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  99. Xagorari A, Chlichlia K. 2008. Toll-like receptors and viruses: induction of innate antiviral immune responses. Open Microbiol J, 2: 49–59.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  100. Yang Y, Ye F, Zhu N, Wang W, Deng Y, Zhao Z, Tan W. 2015. Middle East respiratory syndrome coronavirus ORF4b protein inhibits type I interferon production through both cytoplasmic and nuclear targets. Sci Rep, 5: 17554.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  101. Yang Y, Zhang L, Geng H, Deng Y, Huang B, Guo Y, Zhao Z, Tan W. 2013. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists. Protein Cell, 4: 951–961.

    CAS  PubMed  Article  Google Scholar 

  102. Yeager CL, Ashmun RA, Williams RK, Cardellichio CB, Shapiro LH, Look AT, Holmes KV. 1992. Human aminopeptidase N is a receptor for human coronavirus 229E. Nature, 357: 420–422.

    CAS  PubMed  Article  Google Scholar 

  103. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M Jr, Akira S, Yonehara S, Kato A, Fujita T. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol, 175: 2851–2858.

    CAS  PubMed  Article  Google Scholar 

  104. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNAinduced innate antiviral responses. Nat Immunol, 5: 730–737.

    CAS  PubMed  Article  Google Scholar 

  105. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, Prentice E, Denison MR, Geisbert TW, Baric RS. 2003. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc Natl Acad Sci USA, 100: 12995–13000.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  106. Yuen KS, Chan CP, Wong NHM, Ho CH, Ho TH, Lei T, Deng W, Tsao SW, Chen H, Kok KH, Jin DY. 2015. CRISPR/Cas9-mediated genome editing of Epstein-Barr virus in human cells. J Gen Virol, 96: 626–636.

    CAS  PubMed  Article  Google Scholar 

  107. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 367: 1814–1820.

    CAS  PubMed  Article  Google Scholar 

  108. Zhang R, Jha BK, Ogden KM, Dong B, Zhao L, Elliott R, Patton JT, Silverman RH, Weiss SR. 2013. Homologous 2′, 5′-phosphodiesterases from disparate RNA viruses antagonize antiviral innate immunity. Proc Natl Acad Sci USA, 110: 13114–13119.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  109. Zhao L, Jha BK, Wu A, Elliott R, Ziebuhr J, Gorbalenya AE, Silverman RH, Weiss SR. 2012. Antagonism of the interferon-induced OAS-RNase L pathway by murine coronavirus ns2 protein is required for virus replication and liver pathology. Cell Host Microbe, 11: 607–616.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  110. Zhong Y, Tan YW, Liu DX. 2012. Recent progress in studies of arterivirus- and coronavirus-host interactions. Viruses, 4: 980–1010.

    PubMed Central  PubMed  Article  Google Scholar 

  111. Zornetzer GA, Frieman MB, Rosenzweig E, Korth MJ, Page C, Baric RS, Katze MG. 2010. Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection. J Virol, 84: 11297–11309.

    PubMed Central  CAS  PubMed  Article  Google Scholar 

  112. Züst R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. 2011. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol, 12: 137–143.

    PubMed Central  PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Yan Jin.

Additional information

ORCID: 0000-0002-2778-3530

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wong, LY.R., Lui, PY. & Jin, DY. A molecular arms race between host innate antiviral response and emerging human coronaviruses. Virol. Sin. 31, 12–23 (2016). https://doi.org/10.1007/s12250-015-3683-3

Download citation

Keywords

  • MERS-CoV
  • SARS-CoV
  • innate antiviral response
  • type I interferons
  • immune evasion