RNA chaperones encoded by RNA viruses

Abstract

RNAs are functionally diverse macromolecules whose proper functions rely strictly upon their correct tertiary structures. However, because of their high structural flexibility, correct folding of RNAs is challenging and slow. Therefore, cells and viruses encode a variety of RNA remodeling proteins, including helicases and RNA chaperones. In RNA viruses, these proteins are believed to play pivotal roles in all the processes involving viral RNAs during the life cycle. RNA helicases have been studied extensively for decades, whereas RNA chaperones, particularly virus-encoded RNA chaperones, are often overlooked. This review describes the activities of RNA chaperones encoded by RNA viruses, particularly the ones identified and characterized in recent years, and the functions of these proteins in different steps of viral life cycles, and presents an overview of this unique group of proteins.

References

  1. Ahola T, den Boon JA, Ahlquist P. 2000. Helicase and capping enzyme active site mutations in brome mosaic virus protein 1a cause defects in template recruitment, negative-strand RNA synthesis, and viral RNA capping. J Virol, 74: 8803–8811.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. Barr JN, Wertz GW. 2005. Role of the conserved nucleotide mismatch within 3'- and 5'-terminal regions of Bunyamwera virus in signaling transcription. J Virol, 79: 3586–3594.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  3. Blight KJ, Rice CM. 1997. Secondary structure determination of the conserved 98-base sequence at the 3' terminus of hepatitis C virus genome RNA. J Virol, 71: 7345–7352.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Boulant S, Montserret R, Hope RG, Ratinier M, Targett-Adams P, Lavergne JP, Penin F, McLauchlan J. 2006. Structural determinants that target the hepatitis C virus core protein to lipid droplets. J Biol Chem, 281: 22236–22247.

    PubMed  Article  CAS  Google Scholar 

  5. Brian DA, Baric RS. 2005. Coronavirus genome structure and replication. Curr Top Microbiol Immunol, 287: 1–30.

    PubMed  CAS  Google Scholar 

  6. Brown BA, Panganiban AT. 2010. Identification of a region of hantavirus nucleocapsid protein required for RNA chaperone activity. RNA Biol, 7: 830–837.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. Bystroff C, Shao Y. 2002. Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics, 18: S54–S61.

  8. Chauhan S, Woodson SA. 2008. Tertiary interactions determine the accuracy of RNA folding. J Am Chem Soc, 130: 1296–1303.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Cheng Z, Yang J, Xia H, Qiu Y, Wang Z, Han Y, Xia X, Qin C-F, Hu Y, Zhou X. 2013. The Nonstructural Protein 2C of a Picorna- like Virus Displays Nucleic Acid Helix Destabilizing Activity that can be Functionally Separated from its ATPase activity. J Virol. 87:5205–5218.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. Coulibaly F, Chiu E, Ikeda K, Gutmann S, Haebel PW, Schulze- Briese C, Mori H, Metcalf P. 2007. The molecular organization of cypovirus polyhedra. Nature, 446: 97–101.

    PubMed  Article  CAS  Google Scholar 

  11. Cui L, Wang H, Ji Y, Yang J, Xu S, Huang X, Wang Z, Qin L, Tien P, Zhou X, Guo D, Chen Y. 2015. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells. J Virol, 89: 9029–9043.

    PubMed  Article  CAS  Google Scholar 

  12. DeStefano JJ, Titilope O. 2006. Poliovirus Protein 3AB Displays Nucleic Acid Chaperone and Helix-Destabilizing Activities. J Virol, 80: 1662–1671.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Echeverri AC, Dasgupta A. 1995. Amino terminal regions of poliovirus 2C protein mediate membrane binding. Virology, 208: 540–553.

    PubMed  Article  CAS  Google Scholar 

  14. Friebe P, Bartenschlager R. 2002. Genetic analysis of sequences in the 3' nontranslated region of hepatitis C virus that are important for RNA replication. J Virol, 76: 5326–5338.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  15. Friebe P, Boudet J, Simorre JP, Bartenschlager R. 2005. Kissingloop interaction in the 3' end of the hepatitis C virus genome essential for RNA replication. J Virol, 79: 380–392.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Gangaramani DR, Eden EL, Shah M, Destefano JJ. 2010. The twenty-nine amino acid C-terminal cytoplasmic domain of poliovirus 3AB is critical for nucleic acid chaperone activity. RNA Biol, 7: 820–829.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Gladue DP, O'Donnell V, Baker-Branstetter R, Holinka LG, Pacheco JM, Fernandez-Sainz I, Lu Z, Brocchi E, Baxt B, Piccone ME, Rodriguez L, Borca MV. 2012. Foot-and-mouth disease virus nonstructural protein 2C interacts with Beclin1, modulating virus replication. J Virol, 86: 12080–12090.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Gorbalenya AE, Enjuanes L, Ziebuhr J, Snijder EJ. 2006. Nidovirales: evolving the largest RNA virus genome. Virus Res, 117: 17–37.

    PubMed  Article  CAS  Google Scholar 

  19. Gu B, Liu C, Lin-Goerke J, Maley DR, Gutshall LL, Feltenberger CA, Del Vecchio AM. 2000. The RNA helicase and nucleotide triphosphatase activities of the bovine viral diarrhea virus NS3 protein are essential for viral replication. J Virol, 74: 1794–1800.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. Ito T, Lai MM. 1997. Determination of the secondary structure of and cellular protein binding to the 3'-untranslated region of the hepatitis C virus RNA genome. J Virol, 71: 8698–8706.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Ivanyi-Nagy R, Lavergne JP, Gabus C, Ficheux D, Darlix JL. 2008. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae. Nucleic Acids Res, 36: 712–725.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. James JA, Aggarwal AK, Linden RM, Escalante CR. 2004. Structure of adeno-associated virus type 2 Rep40-ADP complex: insight into nucleotide recognition and catalysis by superfamily 3 helicases. Proc Natl Acad Sci U S A, 101: 12455–12460.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. James JA, Escalante CR, Yoon-Robarts M, Edwards TA, Linden RM, Aggarwal AK. 2003. Crystal structure of the SF3 helicase from adeno-associated virus type 2. Structure, 11: 1025–1035.

    PubMed  Article  CAS  Google Scholar 

  24. Kadare G, Haenni AL. 1997. Virus-encoded RNA helicases. J Virol, 71: 2583–2590.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Khaiboullina SF, Morzunov SP, St Jeor SC. 2005. Hantaviruses: molecular biology, evolution and pathogenesis. Curr Mol Med, 5: 773–790.

    PubMed  Article  CAS  Google Scholar 

  26. King AM, Adams MJ, Lefkowitz E. 2011. Virus taxonomy: ninth report of the International Committee on Taxonomy of Viruses, vol. 9. Elsevier.

    Google Scholar 

  27. Kolykhalov AA, Feinstone SM, Rice CM. 1996. Identification of a highly conserved sequence element at the 3' terminus of hepatitis C virus genome RNA. J Virol, 70: 3363–3371.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Kolykhalov AA, Mihalik K, Feinstone SM, Rice CM. 2000. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol, 74: 2046–2051.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Krogerus C, Egger D, Samuilova O, Hyypia T, Bienz K. 2003. Replication complex of human parechovirus 1. J Virol, 77: 8512–8523.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Mei YG, Cosgriff TM. 1989. Hemorrhage in hemorrhagic fever with renal syndrome in China. Reviews of Infectious Diseases, 11: S884–S890.

  31. Mertens P. 2004. The dsRNA viruses. Virus Research, 101: 3–13.

    PubMed  Article  CAS  Google Scholar 

  32. Mir MA, Panganiban AT. 2006. The bunyavirus nucleocapsid protein is an RNA chaperone: possible roles in viral RNA panhandle formation and genome replication. Rna, 12: 272–282.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. Mirzayan C, Wimmer E. 1992. Genetic analysis of an NTP-binding motif in poliovirus polypeptide 2C. Virology, 189: 547–555.

    PubMed  Article  CAS  Google Scholar 

  34. Musier-Forsyth K. 2010. RNA remodeling by chaperones and helicases. RNA Biol, 7: 632–633.

    PubMed  Article  CAS  Google Scholar 

  35. Obradovic Z, Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK. 2003. Predicting intrinsic disorder from amino acid sequence. Proteins, 53 Suppl 6: 566–572.

    PubMed  Article  CAS  Google Scholar 

  36. Oleksiewicz MB, Botner A, Toft P, Grubbe T, Nielsen J, Kamstrup S, Storgaard T. 2000. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: correlation with the porcine antibody response to a hypervariable site in The ORF 3 structural glycoprotein. Virology, 267: 135–140.

    PubMed  Article  CAS  Google Scholar 

  37. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. 2005. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol, 3: 35–60.

    PubMed  Article  CAS  Google Scholar 

  38. Pfister T, Wimmer E. 1999. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J Biol Chem, 274: 6992–7001.

    PubMed  Article  CAS  Google Scholar 

  39. Plyusnin A, Vapalahti O, Vaheri A. 1996. Hantaviruses: genome structure, expression and evolution. J Gen Virol, 77: 2677–2687.

    PubMed  Article  CAS  Google Scholar 

  40. Qiu Y, Miao M, Wang Z, Liu Y, Yang J, Xia H, Li XF, Qin CF, Hu Y, Zhou X. 2014. The RNA binding of protein A from Wuhan nodavirus is mediated by mitochondrial membrane lipids. Virology, 462–463: 1–13.

    PubMed  Article  CAS  Google Scholar 

  41. Rajkowitsch L, Chen D, Stampfl S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Blasi U, Schroeder R. 2007. RNA chaperones, RNA annealers and RNA helicases. RNA Biol, 4: 118–130.

    PubMed  Article  CAS  Google Scholar 

  42. Rikkonen M. 1996. Functional significance of the nuclear-targeting and NTP-binding motifs of Semliki Forest virus nonstructural protein nsP2. Virology, 218: 352–361.

    PubMed  Article  CAS  Google Scholar 

  43. Rodriguez PL, Carrasco L. 1993. Poliovirus protein 2C has ATPase and GTPase activities. J Biol Chem, 268: 8105–8110.

    PubMed  CAS  Google Scholar 

  44. Rodriguez PL, Carrasco L. 1995. Poliovirus protein 2C contains two regions involved in RNA binding activity. J Biol Chem, 270: 10105–10112.

    PubMed  Article  CAS  Google Scholar 

  45. Sawicki SG, Sawicki DL. 2005. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol, 287: 31–55.

    PubMed  CAS  Google Scholar 

  46. Sharma K, Didier P, Darlix JL, de Rocquigny H, Bensikaddour H, Lavergne JP, Penin F, Lessinger JM, Mely Y. 2010. Kinetic analysis of the nucleic acid chaperone activity of the hepatitis C virus core protein. Nucleic Acids Res, 38: 3632–3642.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Shepard CW, Finelli L, Alter MJ. 2005. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis, 5: 558–567.

    PubMed  Article  Google Scholar 

  48. Song Y, Friebe P, Tzima E, Junemann C, Bartenschlager R, Niepmann M. 2006. The hepatitis C virus RNA 3'-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol, 80: 11579–11588.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. Tang F, Xia H, Wang P, Yang J, Zhao T, Zhang Q, Hu Y, Zhou X. 2014. The identification and characterization of nucleic acid chaperone activity of human enterovirus 71 nonstructural protein 3AB. Virology, 464–465: 353–364.

    PubMed  Article  CAS  Google Scholar 

  50. Taraporewala Z, Chen D, Patton JT. 1999. Multimers formed by the rotavirus nonstructural protein NSP2 bind to RNA and have nucleoside triphosphatase activity. J Virol, 73: 9934–9943.

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Taraporewala ZF, Patton JT. 2001. Identification and Characterization of the Helix-Destabilizing Activity of Rotavirus Nonstructural Protein NSP2. J Virol, 75: 4519–4527.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Teterina NL, Kean KM, Gorbalenya AE, Agol VI, Girard M. 1992. Analysis of the functional significance of amino acid residues in the putative NTP-binding pattern of the poliovirus 2C protein. J Gen Virol, 73: 1977–1986.

    PubMed  Article  CAS  Google Scholar 

  53. Teterina NL, Gorbalenya AE, Egger D, Bienz K, Ehrenfeld E. 1997. Poliovirus 2C protein determinants of membrane binding and rearrangements in mammalian cells. J Virol, 71: 8962–8972.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Vo MN, Barany G, Rouzina I, Musier-Forsyth K. 2006. Mechanistic studies of mini-TAR RNA/DNA annealing in the absence and presence of HIV-1 nucleocapsid protein. J Mol Biol, 363: 244–261.

    PubMed  Article  CAS  Google Scholar 

  55. Wang Q, Han Y, Qiu Y, Zhang S, Tang F, Wang Y, Zhang J, Hu Y, Zhou X. 2012. Identification and characterization of RNA duplex unwinding and ATPase activities of an alphatetravirus superfamily 1 helicase. Virology, 433: 440–448.

    PubMed  Article  CAS  Google Scholar 

  56. Wang X, Lee WM, Watanabe T, Schwartz M, Janda M, Ahlquist P. 2005. Brome mosaic virus 1a nucleoside triphosphatase/helicase domain plays crucial roles in recruiting RNA replication templates. J Virol, 79: 13747–13758.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. Woodson SA. 2010. Taming free energy landscapes with RNA chaperones. RNA Biol, 7: 677–686.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  58. Wu T, Heilman-Miller SL, Levin JG. 2007. Effects of nucleic acid local structure and magnesium ions on minus-strand transfer mediated by the nucleic acid chaperone activity of HIV-1 nucleocapsid protein. Nucleic Acids Res, 35: 3974–3987.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Xia H, Wang P, Wang GC, Yang J, Sun X, Wu W, Qiu Y, Shu T, Zhao X, Yin L, Qin CF, Hu Y, Zhou X. 2015. Human Enterovirus Nonstructural Protein 2CATPase Functions as Both an RNA Helicase and ATP-Independent RNA Chaperone. PLoS Pathog, 11: e1005067.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  60. Yang J, Cheng Z, Zhang S, Xiong W, Xia H, Qiu Y, Wang Z, Wu F, Qin CF, Yin L, Hu Y, Zhou X. 2014. A cypovirus VP5 displays The RNA chaperone-like activity that destabilizes RNA helices and accelerates strand annealing. Nucleic Acids Res, 42: 2538–2554.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  61. Zheng Z, Li H, Zhang Z, Meng J, Mao D, Bai B, Lu B, Mao P, Hu Q, Wang H. 2011. Enterovirus 71 2C protein inhibits TNF-alpha- mediated activation of NF-kappaB by suppressing IkappaB kinase beta phosphorylation. J Immunol, 187: 2202–2212.

    PubMed  Article  CAS  Google Scholar 

  62. Zúñiga S, Sola I, Alonso S, Enjuanes L. 2004. Sequence motifs involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol, 78: 980–994.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Zúñiga S, Sola I, Cruz JL, Enjuanes L. 2009. Role of RNA chaperones in virus replication. Virus Res, 139: 253–266.

    PubMed  Article  CAS  Google Scholar 

  64. Zúñiga S, Sola I, Moreno JL, Sabella P, Plana-Durán J, Enjuanes L. 2007. Coronavirus nucleocapsid protein is an RNA chaperone. Virology, 357: 215–227.

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xi Zhou.

Additional information

ORCID: 0000-0002-3846-5079

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Xia, H., Qian, Q. et al. RNA chaperones encoded by RNA viruses. Virol. Sin. 30, 401–409 (2015). https://doi.org/10.1007/s12250-015-3676-2

Download citation

Keywords

  • RNA viruses
  • RNA chaperone
  • ATP-independent helix-destabilizing activity
  • kinetic trap
  • viral life cycle