Application of an M13 bacteriophage displaying tyrosine on the surface for detection of Fe3+ and Fe2+ ions

Abstract

Ferric and ferrous ion plays critical roles in bioprocesses, their influences in many fields have not been fully explored due to the lack of methods for quantification of ferric and ferrous ions in biological system or complex matrix. In this study, an M13 bacteriophage (phage) was engineered for use as a sensor for ferric and ferrous ions via the display of a tyrosine residue on the P8 coat protein. The interaction between the specific phenol group of tyrosine and Fe3+ / Fe2+ was used as the sensor. Transmission electron microscopy showed aggregation of the tyrosine-displaying phages after incubation with Fe3+ and Fe2+. The aggregated phages infected the host bacterium inefficiently. This phenomenon could be utilized for detection of ferric and ferrous ions. For ferric ions, a calibration curve ranging from 200 nmol/L to 8 μmol/L with a detection limit of 58 nmol/L was acquired. For ferrous ions, a calibration curve ranging from 800 nmol/L to 8 μmol/L with a detection limit of 641.7 nmol/L was acquired. The assay was specific for Fe3+ and Fe2+ when tested against Ni2+, Pb2+, Zn2+, Mn2+, Co2+, Ca2+, Cu2+, Cr3+, Ba2+, and K+. The tyrosine displaying phage to Fe3+ and Fe2+ interaction would have plenty of room in application to biomaterials and bionanotechnology.

This is a preview of subscription content, access via your institution.

References

  1. Allen LH, 2002. Iron supplements: scientific issues concerning efficacy and implications for research and programs. J Nutr, 132: 813S–819S.

    PubMed  CAS  Google Scholar 

  2. DePorter SM, McNaughton BR. 2014. Engineered M13 bacteriophage nanocarriers for intracellular delivery of exogenous proteins to human prostate cancer cells. Bioconjug Chem, 25: 1620–1625.

    PubMed  CAS  Article  Google Scholar 

  3. Ghosh D, Kohli AG, Moser F, Endy D, Belcher AM. 2012. Refactored M13 bacteriophage as a platform for tumor cell imaging and drug delivery. ACS Synth Biol, 1: 576–582.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  4. Glucksman MJ, Bhattacharjee S, Makowski L. 1992. Three-dimensional structure of a cloning vector. X-ray diffraction studies of filamentous bacteriophage M13 at 7 A resolution. J Mol Biol, 226: 455–470.

    PubMed  CAS  Article  Google Scholar 

  5. Guo YC, Zhou YF, Zhang XE, Zhang ZP, Qiao YM, Bi LJ, Wen JK, Liang MF, Zhang JB. 2006. Phage display mediated immuno-PCR. Nucleic Acids Res, 34: e62.

    PubMed  PubMed Central  Article  Google Scholar 

  6. Hess GT, Guimaraes CP, Spooner E, Ploegh HL, Belcher AM. 2013. Orthogonal labeling of M13 minor capsid proteins with DNA to self-assemble end-to-end multiphage structures. ACS Synth Biol, 2: 490–496.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  7. Kehoe JW, Kay BK. 2005. Filamentous phage display in the new millennium. Chem Rev, 105: 4056–4072.

    PubMed  CAS  Article  Google Scholar 

  8. Lee SK, Yun DS, Belcher AM. 2006. Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. Biomacromolecules, 7: 14–17.

    PubMed  CAS  Article  Google Scholar 

  9. Lee SW, Mao C, Flynn CE, Belcher AM. 2002. Ordering of quantum dots using genetically engineered viruses. Science, 296: 892–895.

    PubMed  CAS  Article  Google Scholar 

  10. Liu Z, Qiao J, Niu Z, Wang Q. 2012. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles. Chem Soc Rev, 41: 6178–6194.

    PubMed  CAS  Article  Google Scholar 

  11. Maeda Y, Javid N, Duncan K, Birchall L, Gibson KF, Cannon D, Kanetsuki Y, Knapp C, Tuttle T, Ulijn RV, Matsui H. 2014. Discovery of catalytic phages by biocatalyticself-assembly. J Am Chem Soc, 136: 15893–15896.

    PubMed  CAS  Article  Google Scholar 

  12. Neltner B, Peddie B, Xu A, Doenlen W, Durand K, Yun DS, Speakman S, Peterson A, Belcher A. 2010. Production of hydrogen using nanocrystalline protein-templated catalysts on m13 phage. ACS Nano, 4: 3227–3235.

    PubMed  CAS  Article  Google Scholar 

  13. Oh D, Qi J, Han B, Zhang G, Carney TJ, Ohmura J, Zhang Y, Shao-Horn Y, Belcher AM. 2014. M13 virus-directed synthesis of nanostructured metal oxides for lithium-oxygen batteries. Nano Lett, 14: 4837–4845.

    PubMed  CAS  Article  Google Scholar 

  14. Omara FO, Blakley BR. 1993. Vitamin E is protective against iron toxicity and iron-induced hepatic vitamin E depletion in mice. J Nutr, 123: 1649–1655.

    PubMed  CAS  Google Scholar 

  15. Park JP, Do M, Jin HE, Lee SW, Lee H. 2014. M13 bacteriophage displaying DOPA on surfaces: fabrication of various nanostructured inorganic materials without time-consuming screening processes. ACS Appl Mater Interfaces, 6: 18653–18660.

    PubMed  CAS  Article  Google Scholar 

  16. Smith GP. 1985. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 228: 1315–1317.

    PubMed  CAS  Article  Google Scholar 

  17. Smith GP, Petrenko VA. 1997. Phage Display. Chem Rev, 97: 391–410.

    PubMed  CAS  Article  Google Scholar 

  18. Wu L, Lee LA, Niu Z, Ghoshroy S, Wang Q. 2011. Visualizing cell extracellularmatrix (ECM) deposited by cells cultured on aligned bacteriophage M13 thin films. Langmuir, 27: 9490–9496.

    PubMed  CAS  Article  Google Scholar 

  19. Yi H, Ghosh D, Ham MH, Qi J, Barone PW, Strano MS, Belcher AM. 2012. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett, 12:1176–1183.

    PubMed  CAS  PubMed Central  Article  Google Scholar 

  20. Yoo PJ, Nam KT, Qi J, Lee SK, Park J, Belcher AM, Hammond PT. 2006. Spontaneous assembly of viruses on multilayered polymer surfaces. Nat Mater, 5: 234–240.

    PubMed  CAS  Article  Google Scholar 

  21. Zhang X, Hou Y, He W, Yang G, Cui J, Liu S, Song X, Huang Z. 2015. Fabricating high performance lithium-ion batteries using bionanotechnology. Nanoscale, 7: 3356–3372.

    PubMed  CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaosheng Liang.

Additional information

ORCID: 0000-0003-1482-6914

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Niu, C., Wu, Y. et al. Application of an M13 bacteriophage displaying tyrosine on the surface for detection of Fe3+ and Fe2+ ions. Virol. Sin. 30, 410–416 (2015). https://doi.org/10.1007/s12250-015-3651-y

Download citation

Keywords

  • M13 bacteriophage
  • tyrosine
  • display
  • ferric ion
  • ferrous ion
  • aggregation