Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Accidental acquisition of a rescued Japanese encephalitis virus with unspliced introns in the viral genome when using an intron-based stabilization approach

11 January 2023

Ying Huang, Hongshan Xu, … Zhixin Yang

A reverse genetics system for enterovirus D68 using human RNA polymerase I

17 May 2018

Minglei Pan, Shuai Gao, … Tao Wang

Genomic changes in an attenuated genotype I Japanese encephalitis virus and comparison with virulent parental strain

31 March 2018

Yuyong Zhou, Rui Wu, … Sanjie Cao

Defective HIV-1 envelope gene promotes the evolution of the infectious strain through recombination in vitro

04 August 2020

Huamian Wei, Danwei Yu, … Yuxian He

Generation of recombinant MVA-norovirus: a comparison study of bacterial artificial chromosome- and marker-based systems

09 August 2019

Franziska Kugler, Ingo Drexler, … Hassan Moeini

Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus

06 March 2020

Yunze Guo, Jakobus M. Pretorius, … Encheng Sun

Identification of a new amino acid mutation in the HN protein of NDV involved in pathogenicity

20 December 2021

Xi Chen, Yanqing Jia, … Zengqi Yang

A cDNA-based reverse genetics system for feline calicivirus identifies the 3′ untranslated region as an essential element for viral replication

07 January 2023

Jie Cheng, Aoxing Tang, … Guangqing Liu

Reverse Genetics Assembly of Newcastle Disease Virus Genome Template Using Asis-Sal-Pac BioBrick Strategy

01 May 2020

Amin Tavassoli, Safoura Soleymani, … Hesam Dehghani

Download PDF
  • Research Article
  • Published: 30 September 2015

An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus

  • Ruikun Du1,
  • Manli Wang1,
  • Zhihong Hu1,
  • Hualin Wang1 &
  • …
  • Fei Deng1 

Virologica Sinica volume 30, pages 354–362 (2015)Cite this article

  • 286 Accesses

  • 4 Citations

  • Metrics details

Abstract

Japanese encephalitis virus (JEV) is one of the most common pathogens of severe viral encephalitis, which is a severe threat to human health. Despite instability of the JEV genome in bacteria, many strategies have been developed to establish molecular clone systems of JEV, providing convenient tools for studying the virus life cycle and virus–host interactions. In this study, we adapted an In-Fusion enzyme-based in vitro recombination method to construct a reverse genetic system of JEV, thereby providing a rapid approach to introduce mutations into the structural genes. A truncated genome without the structural genes was constructed as the backbone, and the complementary segment containing the structural genes was recombined in vitro, which was then transfected directly into virus-permissive cells. The progeny of the infectious virus was successfully detected in the supernatant of the transfected cells, and showed an identical phenotype to its parental virus. To provide a proof-of-principle, the 12 conserved cysteine residues in the envelope (E) protein of JEV were respectively mutated using this approach, and all mutations resulted in a complete failure to generate infectious virus. However, a leucine-tophenylanine mutation at amino acid 107 of the E protein did not interfere with the production of the infectious virus. These results suggested that all 12 cysteines in the E protein are essential for the JEV life cycle. In summary, a novel reverse genetic system of JEV was established for rapidly introducing mutations into structural genes, which will serve as a useful tool for functional studies.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Allison SL, Schalich J, Stiasny K, Mandl CW, Heinz FX. 2001. Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol, 75: 4268–4275.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Aubry F, Nougairede A, de Fabritus L, Querat G, Gould EA, de Lamballerie X. 2014. Single-stranded positive-sense RNA viruses generated in days using infectious subgenomic amplicons. J Gen Virol, 95: 2462–2467.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carleton M, Brown DT. 1996. Disulfide bridge-mediated folding of Sindbis virus glycoproteins. J Virol, 70: 5541–5547.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chambers TJ, Hahn CS, Galler R, Rice CM. 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol, 44: 649–688.

    Article  CAS  PubMed  Google Scholar 

  • Du R, Yin F, Wang M, Hu Z, Wang H, Deng F. 2015. Glycoprotein E of the Japanese encephalitis virus forms virus-like particles and induces syncytia when expressed by a baculovirus. J Gen Virol, 96: 1006–1014.

    Article  CAS  PubMed  Google Scholar 

  • Fenouillet E, Lavillette D, Loureiro S, Krashias G, Maurin G, Cosset FL, Jones IM, Barbouche R. 2008. Contribution of redox status to hepatitis C virus E2 envelope protein function and antigenicity. J Biol Chem, 283: 26340–26348.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ghosh D, Basu A. 2009. Japanese encephalitis-a pathological and clinical perspective. PLoS Negl Trop Dis, 3: e437.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li XD, Li XF, Ye HQ, Deng CL, Ye Q, Shan C, Shang BD, Xu LL, Li SH, Cao SB, Yuan ZM, Shi PY, Qin CF, Zhang B. 2014. Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. J Gen Virol, 95: 806–815.

    Article  CAS  PubMed  Google Scholar 

  • Lin TY, Dowd KA, Manhart CJ, Nelson S, Whitehead SS, Pierson TC. 2012. A novel approach for the rapid mutagenesis and directed evolution of the structural genes of west nile virus. J Virol, 86: 3501–3512.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luca VC, AbiMansour J, Nelson CA, Fremont DH. 2012. Crystal structure of the Japanese encephalitis virus envelope protein. J Virol, 86: 2337–2346.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melian EB, Hinzman E, Nagasaki T, Firth AE, Wills NM, Nouwens AS, Blitvich BJ, Leung J, Funk A, Atkins JF, Hall R, Khromykh AA. 2010. NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol, 84: 1641–1647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Misra UK, Kalita J. 2010. Overview: Japanese encephalitis. Prog Neurobiol, 91: 108–120.

    Article  CAS  PubMed  Google Scholar 

  • Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 3: 13–22.

    Article  CAS  PubMed  Google Scholar 

  • Orlinger KK, Hoenninger VM, Kofler RM, Mandl CW. 2006. Construction and mutagenesis of an artificial bicistronic tickborne encephalitis virus genome reveals an essential function of the second transmembrane region of protein e in flavivirus assembly. J Virol, 80: 12197–12208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pangerl K, Heinz FX, Stiasny K. 2011. Mutational analysis of the zippering reaction during flavivirus membrane fusion. J Virol, 85: 8495–8501.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parrott MM, Sitarski SA, Arnold RJ, Picton LK, Hill RB, Mukhopadhyay S. 2009. Role of conserved cysteines in the alphavirus E3 protein. J Virol, 83: 2584–2591.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Polo S, Ketner G, Levis R, Falgout B. 1997. Infectious RNA transcripts from full-length dengue virus type 2 cDNA clones made in yeast. J Virol, 71: 5366–5374.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pu SY, Wu RH, Tsai MH, Yang CC, Chang CM, Yueh A. 2014. A novel approach to propagate flavivirus infectious cDNA clones in bacteria by introducing tandem repeat sequences upstream of virus genome. J Gen Virol, 95: 1493–1503.

    Article  CAS  PubMed  Google Scholar 

  • Pu SY, Wu RH, Yang CC, Jao TM, Tsai MH, Wang JC, Lin HM, Chao YS, Yueh A. 2011. Successful propagation of flavivirus infectious cDNAs by a novel method to reduce the cryptic bacterial promoter activity of virus genomes. J Virol, 85: 2927–2941.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed LJ, Muench H. 1938. A simple method of estimating fifty per cent endpoints. Am J Hyg, 27: 493–497.

    Google Scholar 

  • Solomon T, Winter PM. 2004. Neurovirulence and host factors in flavivirus encephalitis—evidence from clinical epidemiology. Arch Virol Suppl: 161–170.

  • Sumiyoshi H, Hoke CH, Trent DW. 1992. Infectious Japanese encephalitis virus RNA can be synthesized from in vitro-ligated cDNA templates. J Virol, 66: 5425–5431.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sumiyoshi H, Tignor GH, Shope RE. 1995. Characterization of a highly attenuated Japanese encephalitis virus generated from molecularly cloned cDNA. J Infect Dis, 171: 1144–1151.

    Article  CAS  PubMed  Google Scholar 

  • Ward R, Davidson AD. 2008. Reverse genetics and the study of dengue virus. Future virol., 3: 279–290.

    Article  CAS  Google Scholar 

  • Whitehurst CB, Soderblom EJ, West ML, Hernandez R, Goshe MB, Brown DT. 2007. Location and role of free cysteinyl residues in the Sindbis virus E1 and E2 glycoproteins. J Virol, 81: 6231–6240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu KP, Wu CW, Tsao YP, Kuo TW, Lou YC, Lin CW, Wu SC, Cheng JW. 2003. Structural basis of a flavivirus recognized by its neutralizing antibody: solution structure of the domain III of the Japanese encephalitis virus envelope protein. J Biol Chem, 278: 46007–46013.

    Article  CAS  PubMed  Google Scholar 

  • Yamshchikov V, Mishin V, Cominelli F. 2001. A new strategy in design of +RNA virus infectious clones enabling their stable propagation in E. coli. Virology, 281: 272–280.

    Article  CAS  PubMed  Google Scholar 

  • Yun SI, Choi YJ, Song BH, Lee YM. 2009. 3' cis-acting elements that contribute to the competence and efficiency of Japanese encephalitis virus genome replication: functional importance of sequence duplications, deletions, and substitutions. J Virol, 83: 7909–7930.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yun SI, Lee YM. 2014. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother, 10: 263–279.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Huang Q, Ma W, Jiang S, Fan Y, Zhang H. 2001. Amplification and cloning of the full-length genome of Japanese encephalitis virus by a novel long RT-PCR protocol in a cosmid vector. J Virol Methods, 96: 171–182.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China

    Ruikun Du, Manli Wang, Zhihong Hu, Hualin Wang & Fei Deng

Authors
  1. Ruikun Du
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Manli Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Zhihong Hu
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Hualin Wang
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Fei Deng
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Fei Deng.

Additional information

ORCID: 0000-0002-5385-083X

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Du, R., Wang, M., Hu, Z. et al. An in vitro recombination-based reverse genetic system for rapid mutagenesis of structural genes of the Japanese encephalitis virus. Virol. Sin. 30, 354–362 (2015). https://doi.org/10.1007/s12250-015-3623-2

Download citation

  • Received: 10 July 2015

  • Accepted: 22 September 2015

  • Published: 30 September 2015

  • Issue Date: October 2015

  • DOI: https://doi.org/10.1007/s12250-015-3623-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Japanese encephalitis virus (JEV)
  • reverse genetic system
  • in vitro recombination
  • structural gene
  • E protein
  • cysteine
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 34.239.173.144

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.