Skip to main content

Advertisement

Log in

Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity

  • Review
  • Published:
Virologica Sinica

Abstract

Innate immunity is critical for the control of virus infection and operates to restrict viral susceptibility and direct antiviral immunity for protection from acute or chronic viral-associated diseases including cancer. RIG-I like receptors (RLRs) are cytosolic RNA helicases that function as pathogen recognition receptors to detect RNA pathogen associated molecular patterns (PAMPs) of virus infection. The RLRs include RIG-I, MDA5, and LGP2. They function to recognize and bind to PAMP motifs within viral RNA in a process that directs the RLR to trigger downstream signaling cascades that induce innate immunity that controls viral replication and spread. Products of RLR signaling also serve to modulate the adaptive immune response to infection. Recent studies have additionally connected RLRs to signaling cascades that impart inflammatory and apoptotic responses to virus infection. Viral evasion of RLR signaling supports viral outgrowth and pathogenesis, including the onset of viral-associated cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol, 10: 1065–1072.

    CAS  PubMed  Google Scholar 

  • Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V. 2013. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature, 498: 380–384.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ. 2002. HMGB1 as a DNA-binding cytokine. J Leukoc Biol, 72: 1084–1091.

    CAS  PubMed  Google Scholar 

  • Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, Randall RE. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sci U S A, 101: 17264–17269.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ariumi Y, Kuroki M, Abe K, Dansako H, Ikeda M, Wakita T, Kato N. 2007. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol, 81: 13922–13926.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barbalat R, Lau L, Locksley RM, Barton GM. 2009. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat Immunol, 10: 1200–1207.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barral PM, Sarkar D, Fisher PB, Racaniello VR. 2009. RIG-I is cleaved during picornavirus infection. Virology, 391: 171–176.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berke IC, Modis Y. 2012. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J, 31: 1714–1726.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Besch R, Poeck H, Hohenauer T, Senft D, Hacker G, Berking C, Hornung V, Endres S, Ruzicka T, Rothenfusser S, Hartmann G. 2009. Proapoptotic signaling induced by RIG-I and MDA-5 results in type I interferon-independent apoptosis in human melanoma cells. J Clin Invest, 119: 2399–2411.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB. 2012. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med, 209: 1969–1983.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng G, Zhong J, Chung J, Chisari FV. 2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc Natl Acad Sci U S A, 104: 9035–9040.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiu YH, Macmillan JB, Chen ZJ. 2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell, 138: 576–591.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP. 2008. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell, 29: 169–179.

    CAS  PubMed  Google Scholar 

  • Daffis S, Samuel MA, Keller BC, Gale M, Jr., Diamond MS. 2007. Cell-specific IRF-3 responses protect against West Nile virus infection by interferon-dependent and-independent mechanisms. PLoS Pathog, 3: e106.

    PubMed Central  PubMed  Google Scholar 

  • Daffis S, Samuel MA, Suthar MS, Keller BC, Gale M, Jr., Diamond MS. 2008. Interferon regulatory factor IRF-7 induces the antiviral alpha interferon response and protects against lethal West Nile virus infection. J Virol, 82: 8465–8475.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deddouche S, Goubau D, Rehwinkel J, Chakravarty P, Begum S, Maillard PV, Borg A, Matthews N, Feng Q, van Kuppeveld J, Reis e Sousa C. 2014. Identification of an LGP2-associated MDA5 agonist in picornavirus-infected cells. Elife, 3: e01535.

    PubMed Central  PubMed  Google Scholar 

  • DeWitte-Orr SJ, Collins SE, Bauer CM, Bowdish DM, Mossman KL. 2010. An accessory to the ‘Trinity’: SR-As are essential pathogen sensors of extracellular dsRNA, mediating entry and leading to subsequent type I IFN responses. PLoS Pathog, 6: e1000829.

    PubMed Central  PubMed  Google Scholar 

  • Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, Hacohen N, Chen ZJ, Whelan SP, Fransen M, Nibert ML, Superti-Furga G, Kagan JC. 2010. Peroxisomes are signaling platforms for antiviral innate immunity. Cell, 141: 668–681.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elinav E, Strowig T, Henao-Mejia J, Flavell RA. 2011. Regulation of the antimicrobial response by NLR proteins. Immunity, 34: 665–679.

    CAS  PubMed  Google Scholar 

  • Errett JS, Suthar MS, McMillan A, Diamond MS, Gale M, Jr. 2013. The essential, nonredundant roles of RIG-I and MDA5 in detecting and controlling West Nile virus infection. J Virol, 87: 11416–11425.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferenci P, Scherzer TM, Kerschner H, Rutter K, Beinhardt S, Hofer H, Schoniger-Hekele M, Holzmann H, Steindl-Munda P. 2008. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology, 135: 1561–1567.

    CAS  PubMed  Google Scholar 

  • Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M, Jr. 2008. Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol, 82: 609–616.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fullam A, Schroder M. 2013. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. Biochim Biophys Acta, 1829: 854–865.

    CAS  PubMed  Google Scholar 

  • Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H, Inoue M, Minowa O, Yoshida A, Deguchi K, Sato H, Ito S, Shiroishi T, Takeyasu K, Noda T, Fujita T. 2014. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity, 40: 199–212.

    CAS  PubMed  Google Scholar 

  • Gao P, Ascano M, Zillinger T, Wang W, Dai P, Serganov AA, Gaffney BL, Shuman S, Jones RA, Deng L, Hartmann G, Barchet W, Tuschl T, Patel DJ. 2013. Structure-function analysis of STING activation by c[G(2',5')pA(3',5')p] and targeting by antiviral DMXAA. Cell, 154: 748–762.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan K, Zheng Z, Song T, He X, Xu C, Zhang Y, Ma S, Wang Y, Xu Q, Cao Y, Li J, Yang X, Ge X, Wei C, Zhong H. 2013. MAVS regulates apoptotic cell death by decreasing K48-linked ubiquitination of voltage-dependent anion channel 1. Mol Cell Biol, 33: 3137–3149.

    PubMed Central  PubMed  Google Scholar 

  • Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Forster I, Farlik M, Decker T, Du Pasquier RA, Romero P, Tschopp J. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity, 34: 213–223.

    CAS  PubMed  Google Scholar 

  • Hata N, Sato M, Takaoka A, Asagiri M, Tanaka N, Taniguchi T. 2001. Constitutive IFN-alpha/beta signal for efficient IFN-alpha/ beta gene induction by virus. Biochem Biophys Res Commun, 285: 518–525.

    CAS  PubMed  Google Scholar 

  • Hoenen A, Liu W, Kochs G, Khromykh AA, Mackenzie JM. 2007. West Nile virus-induced cytoplasmic membrane structures provide partial protection against the interferon-induced antiviral MxA protein. J Gen Virol, 88: 3013–3017.

    CAS  PubMed  Google Scholar 

  • Horner SM, Gale M, Jr. 2013. Regulation of hepatic innate immunity by hepatitis C virus. Nat Med, 19: 879–888.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horner SM, Park HS, Gale M, Jr. 2012. Control of innate immune signaling and membrane targeting by the Hepatitis C virus NS3/4A protease are governed by the NS3 helix alpha0. J Virol, 86: 3112–3120.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horner SM, Liu HM, Park HS, Briley J, Gale M, Jr. 2011. Mitochondrial- associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A, 108: 14590–14595.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, Poeck H, Akira S, Conzelmann KK, Schlee M, Endres S, Hartmann G. 2006. 5’-Triphosphate RNA is the ligand for RIG-I. Science, 314: 994–997.

    PubMed  Google Scholar 

  • Ichinohe T, Pang IK, Iwasaki A. 2010. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat Immunol, 11: 404–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Isaacs A, Burke DC, Fadeeva L. 1958. Effect of interferon on the growth of viruses on the chick chorion. Br J Exp Pathol, 39: 447–451.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Iwasaki A, Medzhitov R. 2010. Regulation of adaptive immunity by the innate immune system. Science, 327: 291–295.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M, Jr., Patel SS, Marcotrigiano J. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature, 479: 423–427.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, Villinger F, Murthy N, Steel J, Jacob J, Hogan RJ, Garcia-Sastre A, Compans R, Pulendran B. 2011. Programming the magnitude and persistence of antibody responses with innate immunity. Nature, 470: 543–547.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation- associated gene 5. J Exp Med, 205: 1601–1610.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reise Sousa C, Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 441: 101–105.

    CAS  PubMed  Google Scholar 

  • Keller BC, Fredericksen BL, Samuel MA, Mock RE, Mason PW, Diamond MS, Gale M, Jr. 2006. Resistance to alpha/beta interferon is a determinant of West Nile virus replication fitness and virulence. J Virol, 80: 9424–9434.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lange CM, Jacobson IM, Rice CM, Zeuzem S. 2013. Emerging therapies for the treatment of hepatitis C. EMBO Mol Med, 6: 4–15.

    PubMed Central  Google Scholar 

  • Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, Liu W, Ashour J, Shupert WL, Holbrook MR, Barrett AD, Mason PW, Bloom ME, Garcia-Sastre A, Khromykh AA, Best SM. 2010. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon- mediated JAK-STAT signaling. J Virol, 84: 3503–3515.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lazear HM, Pinto AK, Ramos HJ, Vick SC, Shrestha B, Suthar MS, Gale M, Jr., Diamond MS. 2013. Pattern recognition receptor MDA5 modulates CD8+ T cell-dependent clearance of West Nile virus from the central nervous system. J Virol, 87: 11401–11415.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Shu C, Yi G, Chaton CT, Shelton CL, Diao J, Zuo X, Kao CC, Herr AB, Li P. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity, 39: 1019–1031.

    CAS  PubMed  Google Scholar 

  • Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M, Jr. 2012. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe, 11: 528–537.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Longhi MP, Trumpfheller C, Idoyaga J, Caskey M, Matos I, Kluger C, Salazar AM, Colonna M, Steinman RM. 2009. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J Exp Med, 206: 1589–1602.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M, Jr. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol, 82: 335–345.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loo YM, Gale M, Jr. 2011. Immune signaling by RIG-I-like receptors. Immunity, 34: 680–692.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Loo YM, Owen DM, Li K, Erickson AK, Johnson CL, Fish PM, Carney DS, Wang T, Ishida H, Yoneyama M, Fujita T, Saito T, Lee WM, Hagedorn CH, Lau DT, Weinman SA, Lemon SM, Gale M, Jr. 2006. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. In: Proc Natl Acad Sci U S A, 103: 6001–6006.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malathi K, Dong B, Gale M, Jr., Silverman RH. 2007. Small self- RNA generated by RNase L amplifies antiviral innate immunity. Nature, 448: 816–819.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malathi K, Saito T, Crochet N, Barton DJ, Gale M, Jr., Silverman RH. 2010. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. Rna, 16: 2108–2119.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marques JT, Devosse T, Wang D, Zamanian-Daryoush M, Serbinowski P, Hartmann R, Fujita T, Behlke MA, Williams BR. 2006. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat Biotechnol, 24: 559–565.

    CAS  PubMed  Google Scholar 

  • McCartney S, Vermi W, Gilfillan S, Cella M, Murphy TL, Schreiber RD, Murphy KM, Colonna M. 2009. Distinct and complementary functions of MDA5 and TLR3 in poly(I:C)-mediated activation of mouse NK cells. J Exp Med, 206: 2967–2976.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCartney SA, Thackray LB, Gitlin L, Gilfillan S, Virgin HW, Colonna M. 2008. MDA-5 recognition of a murine norovirus. PLoS Pathog, 4: e1000108.

    Google Scholar 

  • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature, 437: 1167–1172.

    CAS  PubMed  Google Scholar 

  • Mibayashi M, Martinez-Sobrido L, Loo YM, Cardenas WB, Gale M, Jr., Garcia-Sastre A. 2007. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol, 81: 514–524.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miyashita M, Oshiumi H, Matsumoto M, Seya T. 2011. DDX60, a DEXD/H box helicase, is a novel antiviral factor promoting RIG-I-like receptor-mediated signaling. Mol Cell Biol, 31: 3802–3819.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moriyama M, Kato N, Otsuka M, Shao RX, Taniguchi H, Kawabe T, Omata M. 2007. Interferon-beta is activated by hepatitis C virus NS5B and inhibited by NS4A, NS4B, and NS5A. Hepatol Int, 1: 302–310.

    PubMed Central  PubMed  Google Scholar 

  • Myong S, Cui S, Cornish PV, Kirchhofer A, Gack MU, Jung JU, Hopfner KP, Ha T. 2009. Cytosolic viral sensor RIG-I is a 5'-triphosphat-dependent translocase on double-stranded RNA. Science, 323: 1070–1074.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negishi H, Yanai H, Nakajima A, Koshiba R, Atarashi K, Matsuda A, Matsuki K, Miki S, Doi T, Aderem A, Nishio J, Smale ST, Honda K, Taniguchi T. 2012. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol, 13: 659–666.

    CAS  PubMed  Google Scholar 

  • Nikonov A, Molder T, Sikut R, Kiiver K, Mannik A, Toots U, Lulla A, Lulla V, Utt A, Merits A, Ustav M. 2013. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog, 9: e1003610.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Onomoto K, Jogi M, Yoo JS, Narita R, Morimoto S, Takemura A, Sambhara S, Kawaguchi A, Osari S, Nagata K, Matsumiya T, Namiki H, Yoneyama M, Fujita T. 2012. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS One, 7: e43031.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oshiumi H, Sakai K, Matsumoto M, Seya T. 2010. DEAD/H BOX 3 (DDX3) helicase binds the RIG-I adaptor IPS-1 to up-regulate IFN-beta-inducing potential. Eur J Immunol, 40: 940–948.

    CAS  PubMed  Google Scholar 

  • Parisien JP, Bamming D, Komuro A, Ramachandran A, Rodriguez JJ, Barber G, Wojahn RD, Horvath CM. 2009. A shared interface mediates paramyxovirus interference with antiviral RNA helicases MDA5 and LGP2. J Virol, 83: 7252–7260.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, Walz T, Hur S. 2011. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci U S A, 108: 21010–21015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pichlmair A, Schulz O, Tan CP, Rehwinkel J, Kato H, Takeuchi O, Akira S, Way M, Schiavo G, Reis e Sousa C. 2009. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J Virol, 83: 10761–10769.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W, Kato H, Akira S, Inoue S, Endres S, Peschel C, Hartmann G, Hornung V, Ruland J. 2010. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol, 11: 63–69.

    CAS  PubMed  Google Scholar 

  • Ramos HJ, Lanteri MC, Blahnik G, Negash A, Suthar MS, Brassil MM, Sodhi K, Treuting PM, Busch MP, Norris PJ, Gale M, Jr. 2012. IL-1beta signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog, 8: e1003039.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Runge S, Sparrer KM, Lassig C, Hembach K, Baum A, Garcia-Sastre A, Soding J, Conzelmann KK, Hopfner KP. 2014. In Vivo Ligands of MDA5 and RIG-I in Measles Virus-Infected Cells. PLoS Pathog, 10: e1004081.

    PubMed Central  PubMed  Google Scholar 

  • Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale M, Jr. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A, 104: 582–587.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M, Jr. 2008. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature, 454: 523–527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, Coch C, Janke M, Mihailovic A, Wardle G, Juranek S, Kato H, Kawai T, Poeck H, Fitzgerald KA, Takeuchi O, Akira S, Tuschl T, Latz E, Ludwig J, Hartmann G. 2009. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double- stranded RNA as contained in panhandle of negative-strand virus. Immunity, 31: 25–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schnell G, Loo YM, Marcotrigiano J, Gale M, Jr. 2012. Uridine composition of the poly-U/UC tract of HCV RNA defines nonself recognition by RIG-I. PLoS Pathog, 8: e1002839.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature, 505: 691–695.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schroder K, Tschopp J. 2010. The inflammasomes. Cell, 140: 821–832.

    CAS  PubMed  Google Scholar 

  • Sen GC. 2000. Novel functions of interferon-induced proteins. Semin Cancer Biol, 10: 93–101.

    CAS  PubMed  Google Scholar 

  • Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 122: 669–682.

    CAS  PubMed  Google Scholar 

  • Shigemoto T, Kageyama M, Hirai R, Zheng J, Yoneyama M, Fujita T. 2009. Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes. J Biol Chem, 284: 13348–13354.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoddard MB, Li H, Wang S, Saeed M, Andrus L, Ding W, Jiang X, Learn GH, von Schaewen M, Wen J, Goepfert PA, Hahn BH, Ploss A, Rice CM, Shaw GM. 2015. Identification, molecular cloning, and analysis of full-length hepatitis C virus transmitted/ founder genotypes 1, 3, and 4. MBio, 6: e02518.

    PubMed Central  PubMed  Google Scholar 

  • Subramanian N, Natarajan K, Clatworthy MR, Wang Z, Germain RN. 2013. The adaptor MAVS promotes NLRP3 mitochondrial localization and inflammasome activation. Cell, 153: 348–361.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 339: 786–791.

    CAS  PubMed  Google Scholar 

  • Suthar MS, Diamond MS, Gale M, Jr. 2013. West Nile virus infection and immunity. Nat Rev Microbiol, 11: 115–128.

    CAS  PubMed  Google Scholar 

  • Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, Rudensky AY, Bevan MJ, Clark EA, Kaja MK, Diamond MS, Gale M, Jr. 2010. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog, 6: e1000757.

    PubMed Central  PubMed  Google Scholar 

  • Suthar MS, Ramos HJ, Brassil MM, Netland J, Chappell CP, Blahnik G, McMillan A, Diamond MS, Clark EA, Bevan MJ, Gale M, Jr. 2012. The RIG-I-like Receptor LGP2 Controls CD8(+) T Cell Survival and Fitness. Immunity, 37: 235–248.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahasi K, Kumeta H, Tsuduki N, Narita R, Shigemoto T, Hirai R, Yoneyama M, Horiuchi M, Ogura K, Fujita T, Inagaki F. 2009. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem, 284: 17465–17474.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale M, Jr., Inagaki F, Fujita T. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell, 29: 428–440.

    CAS  PubMed  Google Scholar 

  • Takeda K, Akira S. 2004. TLR signaling pathways. Semin Immunol, 16: 3–9.

    CAS  PubMed  Google Scholar 

  • Takeuchi O, Akira S. 2008. MDA5/RIG-I and virus recognition. Curr Opin Immunol, 20: 17–22.

    CAS  PubMed  Google Scholar 

  • Venkataraman T, Valdes M, Elsby R, Kakuta S, Caceres G, Saijo S, Iwakura Y, Barber GN. 2007. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol, 178: 6444–6455.

    CAS  PubMed  Google Scholar 

  • Wang Y, Cella M, Gilfillan S, Colonna M. 2010. Cutting edge: polyinosinic:polycytidylic acid boosts the generation of memory CD8 T cells through melanoma differentiation-associated protein 5 expressed in stromal cells. J Immunol, 184: 2751–2755.

    CAS  PubMed  Google Scholar 

  • Williams BR. 2001. Signal integration via PKR. Sci STKE, 2001. re2.

  • Wu J, Chen ZJ. 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol, 32: 461–488.

    CAS  PubMed  Google Scholar 

  • Wu J, Sun L, Chen X, Du F, Shi H, Chen C, Chen ZJ. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 339: 826–830.

    CAS  PubMed  Google Scholar 

  • Xu LG, Wang YY, Han KJ, Li LY, Zhai Z, Shu HB. 2005. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell, 19: 727–740.

    CAS  PubMed  Google Scholar 

  • Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, Taniguchi T. 2009. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature, 462: 99–103.

    CAS  PubMed  Google Scholar 

  • Yedavalli VS, Neuveut C, Chi YH, Kleiman L, Jeang KT. 2004. Requirement of DDX3 DEAD box RNA helicase for HIV-1 Rev-RRE export function. Cell, 119: 381–392.

    CAS  PubMed  Google Scholar 

  • Yoo JS, Takahasi K, Ng CS, Ouda R, Onomoto K, Yoneyama M, Lai JC, Lattmann S, Nagamine Y, Matsui T, Iwabuchi K, Kato H, Fujita T. 2014. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog, 10: e1004012.

    PubMed Central  PubMed  Google Scholar 

  • You F, Wang P, Yang L, Yang G, Zhao YO, Qian F, Walker W, Sutton R, Montgomery R, Lin R, Iwasaki A, Fikrig E. 2013. ELF4 is critical for induction of type I interferon and the host antiviral response. Nat Immunol, 14: 1237–1246.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yount JS, Moran TM, Lopez CB. 2007. Cytokine-independent upregulation of MDA5 in viral infection. J Virol, 81: 7316–7319.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Shi H, Wu J, Sun L, Chen C, Chen ZJ. 2013. Cyclic GMPAMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. Mol Cell, 51: 226–235.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Yuan B, Lu N, Facchinetti V, Liu YJ. 2011. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. J Immunol, 187: 4501–4508.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou S, Cerny AM, Zacharia A, Fitzgerald KA, Kurt-Jones EA, Finberg RW. 2010. Induction and inhibition of type I interferon responses by distinct components of lymphocytic choriomeningitis virus. J Virol, 84: 9452–9462.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zust R, Cervantes-Barragan L, Habjan M, Maier R, Neuman BW, Ziebuhr J, Szretter KJ, Baker SC, Barchet W, Diamond MS, Siddell SG, Ludewig B, Thiel V. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 12: 137–143.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Errett, J.S., Gale, M. Emerging complexity and new roles for the RIG-I-like receptors in innate antiviral immunity. Virol. Sin. 30, 163–173 (2015). https://doi.org/10.1007/s12250-015-3604-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-015-3604-5

Keywords