Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Model systems to study the life cycle of human papillomaviruses and HPV-associated cancers
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Human papillomavirus-mediated carcinogenesis and tumor progression

15 April 2021

Fadi Abboodi, Nella C. Delva, … Lucia Pirisi

Potential role of human papillomavirus proteins associated with the development of cancer

27 August 2022

Dhanvee Balaji, Iyshwarya Bhaskar Kalarani, … Ramakrishnan Veerabathiran

Carcinogenesis Associated with Human Papillomavirus Infection. Mechanisms and Potential for Immunotherapy

13 July 2019

M. Vonsky, M. Shabaeva, … M. Isaguliants

Exploring the dynamics and interplay of human papillomavirus and cervical tumorigenesis by integrating biological data into a mathematical model

05 May 2020

Wenting Wu, Lei Song, … Le Zhang

Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis

20 May 2020

Vivien Béziat

HPV-associated cancers

27 November 2019

Christoph Minichsdorfer

Telomeres and Telomerase During Human Papillomavirus-Induced Carcinogenesis

18 May 2018

Anna Pańczyszyn, Ewa Boniewska-Bernacka & Grzegorz Głąb

Evidence for a causal role by human papillomaviruses in prostate cancer – a systematic review

14 July 2020

James S. Lawson & Wendy K. Glenn

Effects of β-HPV on DNA damage response pathways to drive carcinogenesis: a review

03 January 2021

Danyal Tahseen, Peter L. Rady & Stephen K. Tyring

Download PDF
  • Review
  • Published: 23 April 2015

Model systems to study the life cycle of human papillomaviruses and HPV-associated cancers

  • Louise T. Chow1 

Virologica Sinica volume 30, pages 92–100 (2015)Cite this article

  • 948 Accesses

  • 16 Citations

  • Metrics details

Abstract

The prevalent human papillomaviruses (HPVs) infect either cutaneous or mucosal epithelium. Active Infections lead to epithelial hyperprolifeation and are usually cleared in healthy individuals within a year. Persistent infections in the anogenital tracts by certain high-risk genotypes such as HPV-16, HPV-18 and closely related types, can progress to high grade dysplasias and carcinomas in women and men, including cervical, vulva, penile and anal cancers. A significant fraction of the head and neck cancers are also caused by HPV-16. The viral oncogenes responsible for neoplastic conversion are E6 and E7 that disrupt the pathways controlled by the two major tumor suppressor genes, p53 and members of pRB family. Because HPV cannot be propagated in conventional submerged monolayer cell cultures, organotypic epithelial raft cultures that generate a stratified and differentiated epithelium have been used to study the viral life cycle. This article describes several systems to examine aspects of the viral productive phase, along with the advantages and limitations. Animal model systems of HPV carcinogenesis are also briefly described.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Adams JC, Watt FM. 1989. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature, 340: 307–309.

    Article  CAS  PubMed  Google Scholar 

  • Allen-Hoffmann BL, Schlosser SJ, Ivarie CA, Sattler CA, Meisner LF, O’Connor SL. 2000. Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J Invest Dermatol, 114: 444–455.

    Article  CAS  PubMed  Google Scholar 

  • Asselineau D, Prunieras M. Reconstruction of “simplified’ skin: control of fabrication. 1984. Br J Dermatol, 111Suppl 27: 219–222.

    Article  PubMed  Google Scholar 

  • Banerjee NS, Wang HK, Broker TR, Chow LT. 2011. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem, 286: 15473–115482.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bedell MA, Hudson JB, Golub TR, Turek ME, Hosken M, Wilbanks GD, Laimins LA. 1991. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol, 65: 2254–2260.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blanton RA, Perez-Reyes N, Merrick DT, McDougall JK. 1991. Epithelial cells immortalized by human papillomaviruses have premalignant characteristics in organotypic culture. Am J Pathol, 138: 673–685.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bonnez W. 2005. The HPV xenograft severe combined immunodeficiency mouse model. Methods Mol Med, 119: 203–216.

    PubMed  Google Scholar 

  • Borgogna C, Zavattaro E, De Andrea M, Griffin HM, Dell’Oste V, Azzimonti B, Landini MM, Peh WL, Pfister H, Doorbar J, Landolfo S, Gariglio M. 2012. Characterization of beta papillomavirus E4 expression in tumours from Epidermodysplasia Verruciformis patients and in experimental models. Virology, 423: 195–204.

    Article  CAS  PubMed  Google Scholar 

  • Boyce ST, Ham RG. 1983. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol, 81:33s–40s.

    Article  CAS  PubMed  Google Scholar 

  • Bravo IG, Félez-Sánchez M. 2015. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol Med Public Health, 1: 32–51.

    Article  Google Scholar 

  • Bulut G, Üren A. 2015. Generation of k14-e7/Δn87βcat double transgenic mice as a model of cervical cancer. Methods Mol Biol, 1249: 393–406.

    Article  PubMed  Google Scholar 

  • Buonomo T, Carraresi L, Rossini M, Martinelli R. 2011. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins. J Transl Med, 2011 9: 2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bzhalava D, Eklund C, Dillner J. 2015. International standardization and classification of human papillomavirus types. Virology, 476: 341–344.

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Network. 2015. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517: 576–582.

    Article  Google Scholar 

  • Chen Y, Pirisi L, Creek KE. 2013. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer. Virology, 444: 100–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT. 1995. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 9: 2335–2349.

    Article  CAS  PubMed  Google Scholar 

  • Chow LT, Broker TR. 2013. Human papillomavirus infections: warts or cancer? Cold Spring Harb Perspect Biol, 5: a012997.

    Article  PubMed  Google Scholar 

  • Chung SH, Lambert PF. 2009. Prevention and treatment of cervical cancer in mice using estrogen receptor antagonists. Proc Natl Acad Sci U S A, 106: 19467–19472.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chung TK, Van Hummelen P, Chan PK, Cheung TH, Yim SF, Yu MY et al. 2015. Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. Int J Cancer, Jan 27. doi: 10.1002/ijc.29456.

    Google Scholar 

  • Creek KE, Geslani G, Batova A, Pirisi L. 1995. Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes. Adv Exp Med Biol, 375: 117–135.

    Article  CAS  PubMed  Google Scholar 

  • Dollard SC, Wilson JL, Demeter LM, Bonnez W, Reichman RC, Broker TR, Chow LT. 1992. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev, 6: 1131–1142.

    Article  CAS  PubMed  Google Scholar 

  • Donaldson MM, Mackintosh LJ, Bodily JM, Dornan ES, Laimins LA, Morgan IM. 2013. An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J Virol, 86: 12806–12815.

    Article  Google Scholar 

  • Gosmann C, Frazer IH, Mattarollo SR, Blumenthal A. 2014a. IL-18, but not IL-12, induces production of IFN-γ in the immune-suppressive environment of HPV16 E7 transgenic hyperplastic skin. J Invest Dermatol, 134: 2562–2569.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gosmann C, Mattarollo SR, Bridge JA, Frazer IH, Blumenthal A. 2014b. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J Immunol, 193: 2248–2257.

    Article  CAS  PubMed  Google Scholar 

  • Geimanen J, Isok-Paas H, Pipitch R, Salk K, Laos T, Orav M, Reinson T, Ustav M Jr, Ustav M, Ustav E. 2011. Development of a cellular assay system to study the genome replication of highand low-risk mucosal and cutaneous human papillomaviruses. J Virol, 85: 3315–3329.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Genovese NJ, Banerjee NS, Broker TR, Chow LT. 2008. Casein kinase II motif-dependent phosphorylation of HPV E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol, 82: 4862–4873.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Genovese NJ, Broker TR, Chow LT. 2011. Nonconserved lysine residues attenuate the biological function of the low-risk human papillomavirus E7 protein. J Virol, 85: 5546–5554.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez LM, Ma Y, Ho C, McGrath CM, Nelson DB, Parry S. 2008. Placental infection with human papillomavirus is associated with spontaneous preterm delivery. Hum Reprod, 23: 709–715.

    Article  CAS  PubMed  Google Scholar 

  • Gunasekharan V, Laimins LA. 2013. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol, 87: 6037–6043.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Halbert CL, Demers GW, Galloway DA. 1992. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol, 66: 2125–2134.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Henken FE, Banerjee NS, Snijders PJ, Meijer CJ, De-Castro Arce J, Rösl F, Broker TR, Chow LT, Steenbergen RD. 2011. PIK3CA-mediated PI3-kinase signaling is essential for HPV-induced transformation in vitro. Mol Cancer, 10: 71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, Uehara F, Miwa S, Yano S, Murakami T, Momiyama M, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Murata T, Endo I, Hoffman RM. 2015. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One, 10: e0117417.

    Article  PubMed Central  PubMed  Google Scholar 

  • Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F. 2015. Dependence of Intracellular and Exosomal microRNAs on Viral E6/E7 Oncogene Expression in HPV-positive Tumor Cells. PLoS Pathog, 11: e1004712.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong S, Dutta A, Laimins LA. 2015. The acetyltransferase tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses. J Virol, 89: 4668–4675.

    Article  CAS  PubMed  Google Scholar 

  • Hong S, Laimins LA. 2013. The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog, 9: e1003295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hong S, Mehta KP, Laimins LA. 2011. Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance. J Virol, 85: 9486–9494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoskins EE, Morreale RJ, Werner SP, Higginbotham JM, Laimins LA, Lambert PF, Brown DR, Gillison ML, Nuovo GJ, Witte DP, Kim MO, Davies SM, Mehta PA, Butsch Kovacic M, Wikenheiser-Brokamp KA, Wells SI. 2012. The fanconi anemia pathway limits human papillomavirus replication. J Virol, 86: 8131–8138.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Howley PM, Pfister HJ. 2015. Beta genus papillomaviruses and skin cancer. Virology, Feb 24. pii: S0042-6822(15)00047-1. doi: 10.1016/j.virol.2015.02.004.

    Google Scholar 

  • Howie HL, Katzenellenbogen RA, Galloway DA. 2009. Papillomavirus E6 proteins. Virology, 384: 324–334.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hufbauer M, Lazić D, Reinartz M, Akgül B, Pfister H, Weissenborn SJ. 2011. Skin tumor formation in human papillomavirus 8 transgenic mice is associated with a deregulation of oncogenic miRNAs and their tumor suppressive targets. J Dermatol Sci, 64: 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Hurlin PJ, Kaur P, Smith PP, Perez-Reyes N, Blanton RA, McDougall JK. 1991. Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci U S A, 88: 570–574.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jabbar S, Strati K, Shin MK, Pitot HC, Lambert PF. 2010 Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology, 407: 60–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jagu SJ, K Kwak, Schiller JT, Lowy DR, Kleanthous H, Kalnin K, Wang HK, Chow LT, Huh WK, Jaganathan K, Chivukula S, Roden RB. 2013. Phylogenetic considerations in designing a broadly protective multimeric L2 vaccine. J Virol, 87: 6127–6136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jian Y, Schmidt-Grimminger DC, Chien WM, Wu X, Broker TR, Chow LT. 1988. Post-transcriptional induction of p21cip1 protein by human papillomavirus E7 inhibits unscheduled DNA synthesis reactivated in differentiated keratinocytes. Oncogene, 17: 2027–2038.

    Article  Google Scholar 

  • Jung ID, Shin SJ, Lee MG, Kang TH, Han HD, Lee SJ, Kim WS, Kim HM, Park WS, Kim HW, Yun CH, Lee EK, Wu TC, Park YM. 2014. Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by mycobacterium tuberculosis heat shock protein X. J Immunol, 193: 1233–1245.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kho EY, Wang HK, Banerjee NS, Broker TR, Chow LT. 2013. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures. Proc Natl Acad Sci USA, 110: 7542–7549.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lambert PF, Ozbun MA, Collins A, Holmgren S, Lee D, Nakahara T. 2005. Using an immortalized cell line to study the HPV life cycle in organotypic “raft” cultures. Methods Mol Med, 119: 141–155.

    CAS  PubMed  Google Scholar 

  • Lazarczyk M, Cassonnet P, Pons C, Jacob Y, Favre M. 2009. The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev, 73: 348–370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee SA, Belyaeva OV, Wu L, Kedishvili NY. 2011. Retinol dehydrogenase 10 but not retinol/sterol dehydrogenase(s) regulates the expression of retinoic acid-responsive genes in human transgenic skin raft culture. J Biol Chem, 286: 13550–13560.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. 1996. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res, 56: 21–26.

    CAS  PubMed  Google Scholar 

  • Liu Y, You H, Hermonat PL. 2005. Studying the HPV life cycle in 3A trophoblasts and resulting pathophysiology. Methods Mol Med, 119: 237–245

    CAS  PubMed  Google Scholar 

  • Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. 2008. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene, 27: 2575–2582.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Maufort JP, Shai A, Pitot HC, Lambert PF. 2010. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res, 70: 2924–2931.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKenna DJ, Patel D, McCance DJ. 2014. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes. Virology, 448: 210–216.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McLaughlin-Drubin ME, Meyers C. Propagation of infectious, high-risk HPV in organotypic “raft” culture. 2005. Methods Mol Med, 119: 171–186.

    CAS  PubMed  Google Scholar 

  • McLaughlin-Drubin ME, Münger K. 2009. Oncogenic activities of human papillomaviruses. Virus Res, 143: 195–208.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Melar-New M, Laimins LA. 2010. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol, 84: 5212–5221.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyers C, Frattini MG, Hudson JB, Laimins LA. 2002. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science, 257: 971–973.

    Article  Google Scholar 

  • Moody CA, Laimins LA. 2009. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog, 5: e1000605.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moody CA, Laimins LA. 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 10: 550–560.

    Article  CAS  PubMed  Google Scholar 

  • Ocadiz-Delgado R, Marroquin-Chavira A, Hernandez-Mote R, Valencia C, Manjarrez-Zavala ME, Covarrubias L, Gariglio P. 2009. Induction of focal epithelial hyperplasia in tongue of young BK6-E6/E7 HPV16 transgenic mice. Transgenic Res, 18: 513–527.

    Article  CAS  PubMed  Google Scholar 

  • Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ et al. 2014. Landscape of genomic alterations in cervical carcinomas. 2014. Nature, 506: 371–375.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park JW, Shin MK, Lambert PF. 2014. High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7’s induction of DNA damage response, an activity mediated by E7’s inactivation of pocket proteins. Oncogene, 33: 3383–3391.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Park JW, Shin MK, Pitot HC, Lambert PF. 2013. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7’s induction of DNA damage through its inactivation of pocket proteins. PLoS One, 8: e75056.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng S, Wang JW, Karanam B, Wang C, Huh WK, Alvarez RD, Pai SI, Hung CF, Wu TC, Roden RB. 2015. Sequential cisplatin therapy and vaccination with HPV16 E6E7L2 fusion protein in saponin adjuvant GPI-0100 for the treatment of a model HPV16+ cancer. PLoS One, 10: e116389.

    Article  PubMed Central  PubMed  Google Scholar 

  • Regan JA, Laimins LA. 2013. Viral transformation of epithelial cells. Methods Mol Biol, 945: 449–465

    Article  PubMed  Google Scholar 

  • Sankovski E, Männik A, Geimanen J, Ustav E, Ustav M. 2014. Mapping of beta papillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. J Virol, 88: 961–973.

    Article  PubMed Central  PubMed  Google Scholar 

  • Sarkola ME, Grénman SE, Rintala MA, Syrjänen KJ, Syrjänen SM. 2008. Human papillomavirus in the placenta and umbilical cord blood. Acta Obstet Gynecol Scand, 87: 1181–1188.

    Article  PubMed  Google Scholar 

  • Schütze DM, Kooter JM, Wilting SM, Meijer CJ, Quint W, Snijders PJ, Steenbergen RD. 2015. Longitudinal assessment of DNA methylation changes during HPVE6E7-induced immortalization of primary keratinocytes. Epigenetics, 10: 73–81.

    Article  PubMed  Google Scholar 

  • Shishodia G, Verma G, Srivastava Y, Mehrotra R, Das BC, Bharti AC. 2014. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer, 14: 996.

    PubMed Central  PubMed  Google Scholar 

  • Siolas D, Hannon GJ. 2013. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res, 73: 5315–5319.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Son J, Park JW, Lambert PF, Chung SH. 2014. Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice. Carcinogenesis, 35: 489–496.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stanley MA, Browne HM, Appleby M, Minson AC. 1989. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer, 43: 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Stanley JR, Yuspa SH. 1983. Specific epidermal protein markers are modulated during calcium-induced terminal differentiation. J Cell Biol, 96: 1809–1814.

    Article  CAS  PubMed  Google Scholar 

  • Steenbergen RD, Parker JN, Isern S, Snijders PJ, Walboomers JM, Meijer CJ, Broker TR, Chow LT. 1998. Viral E6-E7 transcription in the basal layer of organotypic cultures without apparent p21cip1 protein precedes immortalization of human papillomavirus type 16- and 18-transfected human keratinocytes. J Virol, 72: 749–757.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stelzer MK, Pitot HC, Liem A, Schweizer J, Mahoney C, Lambert PF. 2010. A mouse model for human anal cancer. Cancer Prev Res (Phila), 3: 1534–1541.

    Article  CAS  Google Scholar 

  • Thomas MK, Pitot HC, Liem A, Lambert PF. 2011. Dominant role of HPV16 E7 in anal carcinogenesis. Virology, 421: 114–118.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran le S, Bergot AS, Mattarollo SR, Mittal D, Frazer IH. 2014. Human papillomavirus E7 oncoprotein transgenic skin develops an enhanced inflammatory response to 2,4-dinitrochlorobenzene by an arginase-1-dependent mechanism. J Invest Dermatol, 134:2438–2446.

    Article  PubMed Central  CAS  Google Scholar 

  • Viarisio D, Decker KM, Aengeneyndt B, Flechtenmacher C, Gissmann L, Tommasino M. 2013. Human papillomavirus type 38 E6 and E7 act as tumor promoters during chemically induced skin carcinogenesis. J Gen Virol, 94: 749–752.

    Article  CAS  PubMed  Google Scholar 

  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189: 12–19.

    Article  CAS  PubMed  Google Scholar 

  • Wald AI, Hoskins EE, Wells SI, Ferris RL, Khan SA. 2011. Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck, 33: 504–512.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang HK, Duffy AA, Broker TR, Chow LT. 2009. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev, 23: 181–194.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Meyers C, Wang HK, Chow LT, Zheng ZM. 2011. Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol. 85: 8080–8092.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. 2008. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One, 3: e2557.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, and Zheng ZM. 2014. miRNAs are biomarkers of oncogenic HPV infections, Proc Natl Acad Sci U S A, 111: 4362–4267.

    Google Scholar 

  • Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS, Broker TR, Meyers C, Chow LT, Zheng ZM. 2009. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA, 15: 637–647.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilson JL, Dollard SC, Chow LT, Broker TR. 1992. Epithelial-specific gene expression during differentiation of stratified primary human keratinocyte cultures. Cell Growth Diff, 3: 471–483.

    CAS  PubMed  Google Scholar 

  • Wilson R, Laimins LA. 2005. Differentiation of HPV-containing cells using organotypic “raft” culture or methylcellulose. Methods Mol Med, 119:157–69.

    CAS  PubMed  Google Scholar 

  • Xu H, Pirisi L, Creek KE. 2015. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT. Virology, 474: 144–153.

    Article  CAS  PubMed  Google Scholar 

  • Yablonska S, Hoskins EE, Wells SI, Khan SA. 2013. Identification of miRNAs dysregulated in human foreskin keratinocytes (HFKs) expressing the human papillomavirus (HPV) Type 16 E6 and E7 oncoproteins. Microrna, 2: 2–13.

    Article  CAS  PubMed  Google Scholar 

  • You H, Liu Y, Agrawal N, Prasad CK, Edwards JL, Osborne AF, Korourian S, Lowery CL, Hermonat PL. 2008. Multiple human papillomavirus types replicate in 3A trophoblasts. Placenta, 29: 30–38.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Li S, Yan Q, Chen X, Yang Y, Liu X, Wan X. 2013. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells. PLoS One, 8: e81366.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zheng ZM, Wang X. 2011. Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta, 1809: 668–677.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • zur Hausen H. 2009. Papillomaviruses in the causation of human cancers — a brief historical account. Virology, 384:260–265.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, 35294-0005, USA

    Louise T. Chow

Authors
  1. Louise T. Chow
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Louise T. Chow.

Additional information

ORCID: 0000-0001-7586-9569

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chow, L.T. Model systems to study the life cycle of human papillomaviruses and HPV-associated cancers. Virol. Sin. 30, 92–100 (2015). https://doi.org/10.1007/s12250-015-3600-9

Download citation

  • Received: 21 April 2015

  • Accepted: 21 April 2015

  • Published: 23 April 2015

  • Issue Date: April 2015

  • DOI: https://doi.org/10.1007/s12250-015-3600-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • human papillomaviruses (HPVs)
  • productive program
  • HPV-associated cancers
  • model systems
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.207.90

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.