Virologica Sinica

, Volume 30, Issue 2, pp 92–100 | Cite as

Model systems to study the life cycle of human papillomaviruses and HPV-associated cancers

Review

Abstract

The prevalent human papillomaviruses (HPVs) infect either cutaneous or mucosal epithelium. Active Infections lead to epithelial hyperprolifeation and are usually cleared in healthy individuals within a year. Persistent infections in the anogenital tracts by certain high-risk genotypes such as HPV-16, HPV-18 and closely related types, can progress to high grade dysplasias and carcinomas in women and men, including cervical, vulva, penile and anal cancers. A significant fraction of the head and neck cancers are also caused by HPV-16. The viral oncogenes responsible for neoplastic conversion are E6 and E7 that disrupt the pathways controlled by the two major tumor suppressor genes, p53 and members of pRB family. Because HPV cannot be propagated in conventional submerged monolayer cell cultures, organotypic epithelial raft cultures that generate a stratified and differentiated epithelium have been used to study the viral life cycle. This article describes several systems to examine aspects of the viral productive phase, along with the advantages and limitations. Animal model systems of HPV carcinogenesis are also briefly described.

Keywords

human papillomaviruses (HPVs) productive program HPV-associated cancers model systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams JC, Watt FM. 1989. Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature, 340: 307–309.CrossRefPubMedGoogle Scholar
  2. Allen-Hoffmann BL, Schlosser SJ, Ivarie CA, Sattler CA, Meisner LF, O’Connor SL. 2000. Normal growth and differentiation in a spontaneously immortalized near-diploid human keratinocyte cell line, NIKS. J Invest Dermatol, 114: 444–455.CrossRefPubMedGoogle Scholar
  3. Asselineau D, Prunieras M. Reconstruction of “simplified’ skin: control of fabrication. 1984. Br J Dermatol, 111Suppl 27: 219–222.CrossRefPubMedGoogle Scholar
  4. Banerjee NS, Wang HK, Broker TR, Chow LT. 2011. Human papillomavirus (HPV) E7 induces prolonged G2 following S phase reentry in differentiated human keratinocytes. J Biol Chem, 286: 15473–115482.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Bedell MA, Hudson JB, Golub TR, Turek ME, Hosken M, Wilbanks GD, Laimins LA. 1991. Amplification of human papillomavirus genomes in vitro is dependent on epithelial differentiation. J Virol, 65: 2254–2260.PubMedCentralPubMedGoogle Scholar
  6. Blanton RA, Perez-Reyes N, Merrick DT, McDougall JK. 1991. Epithelial cells immortalized by human papillomaviruses have premalignant characteristics in organotypic culture. Am J Pathol, 138: 673–685.PubMedCentralPubMedGoogle Scholar
  7. Bonnez W. 2005. The HPV xenograft severe combined immunodeficiency mouse model. Methods Mol Med, 119: 203–216.PubMedGoogle Scholar
  8. Borgogna C, Zavattaro E, De Andrea M, Griffin HM, Dell’Oste V, Azzimonti B, Landini MM, Peh WL, Pfister H, Doorbar J, Landolfo S, Gariglio M. 2012. Characterization of beta papillomavirus E4 expression in tumours from Epidermodysplasia Verruciformis patients and in experimental models. Virology, 423: 195–204.CrossRefPubMedGoogle Scholar
  9. Boyce ST, Ham RG. 1983. Calcium-regulated differentiation of normal human epidermal keratinocytes in chemically defined clonal culture and serum-free serial culture. J Invest Dermatol, 81:33s–40s.CrossRefPubMedGoogle Scholar
  10. Bravo IG, Félez-Sánchez M. 2015. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol Med Public Health, 1: 32–51.CrossRefGoogle Scholar
  11. Bulut G, Üren A. 2015. Generation of k14-e7/Δn87βcat double transgenic mice as a model of cervical cancer. Methods Mol Biol, 1249: 393–406.CrossRefPubMedGoogle Scholar
  12. Buonomo T, Carraresi L, Rossini M, Martinelli R. 2011. Involvement of aryl hydrocarbon receptor signaling in the development of small cell lung cancer induced by HPV E6/E7 oncoproteins. J Transl Med, 2011 9: 2.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Bzhalava D, Eklund C, Dillner J. 2015. International standardization and classification of human papillomavirus types. Virology, 476: 341–344.CrossRefPubMedGoogle Scholar
  14. Cancer Genome Atlas Network. 2015. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517: 576–582.CrossRefGoogle Scholar
  15. Chen Y, Pirisi L, Creek KE. 2013. Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer. Virology, 444: 100–108.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Cheng S, Schmidt-Grimminger DC, Murant T, Broker TR, Chow LT. 1995. Differentiation-dependent up-regulation of the human papillomavirus E7 gene reactivates cellular DNA replication in suprabasal differentiated keratinocytes. Genes Dev, 9: 2335–2349.CrossRefPubMedGoogle Scholar
  17. Chow LT, Broker TR. 2013. Human papillomavirus infections: warts or cancer? Cold Spring Harb Perspect Biol, 5: a012997.CrossRefPubMedGoogle Scholar
  18. Chung SH, Lambert PF. 2009. Prevention and treatment of cervical cancer in mice using estrogen receptor antagonists. Proc Natl Acad Sci U S A, 106: 19467–19472.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Chung TK, Van Hummelen P, Chan PK, Cheung TH, Yim SF, Yu MY et al. 2015. Genomic aberrations in cervical adenocarcinomas in Hong Kong Chinese women. Int J Cancer, Jan 27. doi: 10.1002/ijc.29456.Google Scholar
  20. Creek KE, Geslani G, Batova A, Pirisi L. 1995. Progressive loss of sensitivity to growth control by retinoic acid and transforming growth factor-beta at late stages of human papillomavirus type 16-initiated transformation of human keratinocytes. Adv Exp Med Biol, 375: 117–135.CrossRefPubMedGoogle Scholar
  21. Dollard SC, Wilson JL, Demeter LM, Bonnez W, Reichman RC, Broker TR, Chow LT. 1992. Production of human papillomavirus and modulation of the infectious program in epithelial raft cultures. Genes Dev, 6: 1131–1142.CrossRefPubMedGoogle Scholar
  22. Donaldson MM, Mackintosh LJ, Bodily JM, Dornan ES, Laimins LA, Morgan IM. 2013. An interaction between human papillomavirus 16 E2 and TopBP1 is required for optimum viral DNA replication and episomal genome establishment. J Virol, 86: 12806–12815.CrossRefGoogle Scholar
  23. Gosmann C, Frazer IH, Mattarollo SR, Blumenthal A. 2014a. IL-18, but not IL-12, induces production of IFN-γ in the immune-suppressive environment of HPV16 E7 transgenic hyperplastic skin. J Invest Dermatol, 134: 2562–2569.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Gosmann C, Mattarollo SR, Bridge JA, Frazer IH, Blumenthal A. 2014b. IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J Immunol, 193: 2248–2257.CrossRefPubMedGoogle Scholar
  25. Geimanen J, Isok-Paas H, Pipitch R, Salk K, Laos T, Orav M, Reinson T, Ustav M Jr, Ustav M, Ustav E. 2011. Development of a cellular assay system to study the genome replication of highand low-risk mucosal and cutaneous human papillomaviruses. J Virol, 85: 3315–3329.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Genovese NJ, Banerjee NS, Broker TR, Chow LT. 2008. Casein kinase II motif-dependent phosphorylation of HPV E7 protein promotes p130 degradation and S-phase induction in differentiated human keratinocytes. J Virol, 82: 4862–4873.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Genovese NJ, Broker TR, Chow LT. 2011. Nonconserved lysine residues attenuate the biological function of the low-risk human papillomavirus E7 protein. J Virol, 85: 5546–5554.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Gomez LM, Ma Y, Ho C, McGrath CM, Nelson DB, Parry S. 2008. Placental infection with human papillomavirus is associated with spontaneous preterm delivery. Hum Reprod, 23: 709–715.CrossRefPubMedGoogle Scholar
  29. Gunasekharan V, Laimins LA. 2013. Human papillomaviruses modulate microRNA 145 expression to directly control genome amplification. J Virol, 87: 6037–6043.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Halbert CL, Demers GW, Galloway DA. 1992. The E6 and E7 genes of human papillomavirus type 6 have weak immortalizing activity in human epithelial cells. J Virol, 66: 2125–2134.PubMedCentralPubMedGoogle Scholar
  31. Henken FE, Banerjee NS, Snijders PJ, Meijer CJ, De-Castro Arce J, Rösl F, Broker TR, Chow LT, Steenbergen RD. 2011. PIK3CA-mediated PI3-kinase signaling is essential for HPV-induced transformation in vitro. Mol Cancer, 10: 71.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Hiroshima Y, Zhang Y, Zhang N, Maawy A, Mii S, Yamamoto M, Uehara F, Miwa S, Yano S, Murakami T, Momiyama M, Chishima T, Tanaka K, Ichikawa Y, Bouvet M, Murata T, Endo I, Hoffman RM. 2015. Establishment of a patient-derived orthotopic Xenograft (PDOX) model of HER-2-positive cervical cancer expressing the clinical metastatic pattern. PLoS One, 10: e0117417.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Honegger A, Schilling D, Bastian S, Sponagel J, Kuryshev V, Sültmann H, Scheffner M, Hoppe-Seyler K, Hoppe-Seyler F. 2015. Dependence of Intracellular and Exosomal microRNAs on Viral E6/E7 Oncogene Expression in HPV-positive Tumor Cells. PLoS Pathog, 11: e1004712.CrossRefPubMedCentralPubMedGoogle Scholar
  34. Hong S, Dutta A, Laimins LA. 2015. The acetyltransferase tip60 is a critical regulator of the differentiation-dependent amplification of human papillomaviruses. J Virol, 89: 4668–4675.CrossRefPubMedGoogle Scholar
  35. Hong S, Laimins LA. 2013. The JAK-STAT transcriptional regulator, STAT-5, activates the ATM DNA damage pathway to induce HPV 31 genome amplification upon epithelial differentiation. PLoS Pathog, 9: e1003295.CrossRefPubMedCentralPubMedGoogle Scholar
  36. Hong S, Mehta KP, Laimins LA. 2011. Suppression of STAT-1 expression by human papillomaviruses is necessary for differentiation-dependent genome amplification and plasmid maintenance. J Virol, 85: 9486–9494.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Hoskins EE, Morreale RJ, Werner SP, Higginbotham JM, Laimins LA, Lambert PF, Brown DR, Gillison ML, Nuovo GJ, Witte DP, Kim MO, Davies SM, Mehta PA, Butsch Kovacic M, Wikenheiser-Brokamp KA, Wells SI. 2012. The fanconi anemia pathway limits human papillomavirus replication. J Virol, 86: 8131–8138.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Howley PM, Pfister HJ. 2015. Beta genus papillomaviruses and skin cancer. Virology, Feb 24. pii: S0042-6822(15)00047-1. doi: 10.1016/j.virol.2015.02.004.Google Scholar
  39. Howie HL, Katzenellenbogen RA, Galloway DA. 2009. Papillomavirus E6 proteins. Virology, 384: 324–334.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Hufbauer M, Lazić D, Reinartz M, Akgül B, Pfister H, Weissenborn SJ. 2011. Skin tumor formation in human papillomavirus 8 transgenic mice is associated with a deregulation of oncogenic miRNAs and their tumor suppressive targets. J Dermatol Sci, 64: 7–15.CrossRefPubMedGoogle Scholar
  41. Hurlin PJ, Kaur P, Smith PP, Perez-Reyes N, Blanton RA, McDougall JK. 1991. Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci U S A, 88: 570–574.CrossRefPubMedCentralPubMedGoogle Scholar
  42. Jabbar S, Strati K, Shin MK, Pitot HC, Lambert PF. 2010 Human papillomavirus type 16 E6 and E7 oncoproteins act synergistically to cause head and neck cancer in mice. Virology, 407: 60–67.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Jagu SJ, K Kwak, Schiller JT, Lowy DR, Kleanthous H, Kalnin K, Wang HK, Chow LT, Huh WK, Jaganathan K, Chivukula S, Roden RB. 2013. Phylogenetic considerations in designing a broadly protective multimeric L2 vaccine. J Virol, 87: 6127–6136.CrossRefPubMedCentralPubMedGoogle Scholar
  44. Jian Y, Schmidt-Grimminger DC, Chien WM, Wu X, Broker TR, Chow LT. 1988. Post-transcriptional induction of p21cip1 protein by human papillomavirus E7 inhibits unscheduled DNA synthesis reactivated in differentiated keratinocytes. Oncogene, 17: 2027–2038.CrossRefGoogle Scholar
  45. Jung ID, Shin SJ, Lee MG, Kang TH, Han HD, Lee SJ, Kim WS, Kim HM, Park WS, Kim HW, Yun CH, Lee EK, Wu TC, Park YM. 2014. Enhancement of tumor-specific T cell-mediated immunity in dendritic cell-based vaccines by mycobacterium tuberculosis heat shock protein X. J Immunol, 193: 1233–1245.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Kho EY, Wang HK, Banerjee NS, Broker TR, Chow LT. 2013. HPV-18 E6 mutants reveal p53 modulation of viral DNA amplification in organotypic cultures. Proc Natl Acad Sci USA, 110: 7542–7549.CrossRefPubMedCentralPubMedGoogle Scholar
  47. Lambert PF, Ozbun MA, Collins A, Holmgren S, Lee D, Nakahara T. 2005. Using an immortalized cell line to study the HPV life cycle in organotypic “raft” cultures. Methods Mol Med, 119: 141–155.PubMedGoogle Scholar
  48. Lazarczyk M, Cassonnet P, Pons C, Jacob Y, Favre M. 2009. The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev, 73: 348–370.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Lee SA, Belyaeva OV, Wu L, Kedishvili NY. 2011. Retinol dehydrogenase 10 but not retinol/sterol dehydrogenase(s) regulates the expression of retinoic acid-responsive genes in human transgenic skin raft culture. J Biol Chem, 286: 13550–13560.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC. 1996. Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res, 56: 21–26.PubMedGoogle Scholar
  51. Liu Y, You H, Hermonat PL. 2005. Studying the HPV life cycle in 3A trophoblasts and resulting pathophysiology. Methods Mol Med, 119: 237–245PubMedGoogle Scholar
  52. Martinez I, Gardiner AS, Board KF, Monzon FA, Edwards RP, Khan SA. 2008. Human papillomavirus type 16 reduces the expression of microRNA-218 in cervical carcinoma cells. Oncogene, 27: 2575–2582.CrossRefPubMedCentralPubMedGoogle Scholar
  53. Maufort JP, Shai A, Pitot HC, Lambert PF. 2010. A role for HPV16 E5 in cervical carcinogenesis. Cancer Res, 70: 2924–2931.CrossRefPubMedCentralPubMedGoogle Scholar
  54. McKenna DJ, Patel D, McCance DJ. 2014. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes. Virology, 448: 210–216.CrossRefPubMedCentralPubMedGoogle Scholar
  55. McLaughlin-Drubin ME, Meyers C. Propagation of infectious, high-risk HPV in organotypic “raft” culture. 2005. Methods Mol Med, 119: 171–186.PubMedGoogle Scholar
  56. McLaughlin-Drubin ME, Münger K. 2009. Oncogenic activities of human papillomaviruses. Virus Res, 143: 195–208.CrossRefPubMedCentralPubMedGoogle Scholar
  57. Melar-New M, Laimins LA. 2010. Human papillomaviruses modulate expression of microRNA 203 upon epithelial differentiation to control levels of p63 proteins. J Virol, 84: 5212–5221.CrossRefPubMedCentralPubMedGoogle Scholar
  58. Meyers C, Frattini MG, Hudson JB, Laimins LA. 2002. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science, 257: 971–973.CrossRefGoogle Scholar
  59. Moody CA, Laimins LA. 2009. Human papillomaviruses activate the ATM DNA damage pathway for viral genome amplification upon differentiation. PLoS Pathog, 5: e1000605.CrossRefPubMedCentralPubMedGoogle Scholar
  60. Moody CA, Laimins LA. 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 10: 550–560.CrossRefPubMedGoogle Scholar
  61. Ocadiz-Delgado R, Marroquin-Chavira A, Hernandez-Mote R, Valencia C, Manjarrez-Zavala ME, Covarrubias L, Gariglio P. 2009. Induction of focal epithelial hyperplasia in tongue of young BK6-E6/E7 HPV16 transgenic mice. Transgenic Res, 18: 513–527.CrossRefPubMedGoogle Scholar
  62. Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ et al. 2014. Landscape of genomic alterations in cervical carcinomas. 2014. Nature, 506: 371–375.CrossRefPubMedCentralPubMedGoogle Scholar
  63. Park JW, Shin MK, Lambert PF. 2014. High incidence of female reproductive tract cancers in FA-deficient HPV16-transgenic mice correlates with E7’s induction of DNA damage response, an activity mediated by E7’s inactivation of pocket proteins. Oncogene, 33: 3383–3391.CrossRefPubMedCentralPubMedGoogle Scholar
  64. Park JW, Shin MK, Pitot HC, Lambert PF. 2013. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7’s induction of DNA damage through its inactivation of pocket proteins. PLoS One, 8: e75056.CrossRefPubMedCentralPubMedGoogle Scholar
  65. Peng S, Wang JW, Karanam B, Wang C, Huh WK, Alvarez RD, Pai SI, Hung CF, Wu TC, Roden RB. 2015. Sequential cisplatin therapy and vaccination with HPV16 E6E7L2 fusion protein in saponin adjuvant GPI-0100 for the treatment of a model HPV16+ cancer. PLoS One, 10: e116389.CrossRefPubMedCentralPubMedGoogle Scholar
  66. Regan JA, Laimins LA. 2013. Viral transformation of epithelial cells. Methods Mol Biol, 945: 449–465CrossRefPubMedGoogle Scholar
  67. Sankovski E, Männik A, Geimanen J, Ustav E, Ustav M. 2014. Mapping of beta papillomavirus human papillomavirus 5 transcription and characterization of viral-genome replication function. J Virol, 88: 961–973.CrossRefPubMedCentralPubMedGoogle Scholar
  68. Sarkola ME, Grénman SE, Rintala MA, Syrjänen KJ, Syrjänen SM. 2008. Human papillomavirus in the placenta and umbilical cord blood. Acta Obstet Gynecol Scand, 87: 1181–1188.CrossRefPubMedGoogle Scholar
  69. Schütze DM, Kooter JM, Wilting SM, Meijer CJ, Quint W, Snijders PJ, Steenbergen RD. 2015. Longitudinal assessment of DNA methylation changes during HPVE6E7-induced immortalization of primary keratinocytes. Epigenetics, 10: 73–81.CrossRefPubMedGoogle Scholar
  70. Shishodia G, Verma G, Srivastava Y, Mehrotra R, Das BC, Bharti AC. 2014. Deregulation of microRNAs Let-7a and miR-21 mediate aberrant STAT3 signaling during human papillomavirus-induced cervical carcinogenesis: role of E6 oncoprotein. BMC Cancer, 14: 996.PubMedCentralPubMedGoogle Scholar
  71. Siolas D, Hannon GJ. 2013. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res, 73: 5315–5319.CrossRefPubMedCentralPubMedGoogle Scholar
  72. Son J, Park JW, Lambert PF, Chung SH. 2014. Requirement of estrogen receptor alpha DNA-binding domain for HPV oncogene-induced cervical carcinogenesis in mice. Carcinogenesis, 35: 489–496.CrossRefPubMedCentralPubMedGoogle Scholar
  73. Stanley MA, Browne HM, Appleby M, Minson AC. 1989. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer, 43: 672–676.CrossRefPubMedGoogle Scholar
  74. Stanley JR, Yuspa SH. 1983. Specific epidermal protein markers are modulated during calcium-induced terminal differentiation. J Cell Biol, 96: 1809–1814.CrossRefPubMedGoogle Scholar
  75. Steenbergen RD, Parker JN, Isern S, Snijders PJ, Walboomers JM, Meijer CJ, Broker TR, Chow LT. 1998. Viral E6-E7 transcription in the basal layer of organotypic cultures without apparent p21cip1 protein precedes immortalization of human papillomavirus type 16- and 18-transfected human keratinocytes. J Virol, 72: 749–757.PubMedCentralPubMedGoogle Scholar
  76. Stelzer MK, Pitot HC, Liem A, Schweizer J, Mahoney C, Lambert PF. 2010. A mouse model for human anal cancer. Cancer Prev Res (Phila), 3: 1534–1541.CrossRefGoogle Scholar
  77. Thomas MK, Pitot HC, Liem A, Lambert PF. 2011. Dominant role of HPV16 E7 in anal carcinogenesis. Virology, 421: 114–118.CrossRefPubMedCentralPubMedGoogle Scholar
  78. Tran le S, Bergot AS, Mattarollo SR, Mittal D, Frazer IH. 2014. Human papillomavirus E7 oncoprotein transgenic skin develops an enhanced inflammatory response to 2,4-dinitrochlorobenzene by an arginase-1-dependent mechanism. J Invest Dermatol, 134:2438–2446.CrossRefPubMedCentralGoogle Scholar
  79. Viarisio D, Decker KM, Aengeneyndt B, Flechtenmacher C, Gissmann L, Tommasino M. 2013. Human papillomavirus type 38 E6 and E7 act as tumor promoters during chemically induced skin carcinogenesis. J Gen Virol, 94: 749–752.CrossRefPubMedGoogle Scholar
  80. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV et al. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189: 12–19.CrossRefPubMedGoogle Scholar
  81. Wald AI, Hoskins EE, Wells SI, Ferris RL, Khan SA. 2011. Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck, 33: 504–512.CrossRefPubMedCentralPubMedGoogle Scholar
  82. Wang HK, Duffy AA, Broker TR, Chow LT. 2009. Robust production and passaging of infectious HPV in squamous epithelium of primary human keratinocytes. Genes Dev, 23: 181–194.CrossRefPubMedCentralPubMedGoogle Scholar
  83. Wang X, Meyers C, Wang HK, Chow LT, Zheng ZM. 2011. Construction of a full transcription map of human papillomavirus type 18 during productive viral infection. J Virol. 85: 8080–8092.CrossRefPubMedCentralPubMedGoogle Scholar
  84. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM. 2008. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One, 3: e2557.CrossRefPubMedCentralPubMedGoogle Scholar
  85. Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, and Zheng ZM. 2014. miRNAs are biomarkers of oncogenic HPV infections, Proc Natl Acad Sci U S A, 111: 4362–4267.Google Scholar
  86. Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS, Broker TR, Meyers C, Chow LT, Zheng ZM. 2009. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA, 15: 637–647.CrossRefPubMedCentralPubMedGoogle Scholar
  87. Wilson JL, Dollard SC, Chow LT, Broker TR. 1992. Epithelial-specific gene expression during differentiation of stratified primary human keratinocyte cultures. Cell Growth Diff, 3: 471–483.PubMedGoogle Scholar
  88. Wilson R, Laimins LA. 2005. Differentiation of HPV-containing cells using organotypic “raft” culture or methylcellulose. Methods Mol Med, 119:157–69.PubMedGoogle Scholar
  89. Xu H, Pirisi L, Creek KE. 2015. Six1 overexpression at early stages of HPV16-mediated transformation of human keratinocytes promotes differentiation resistance and EMT. Virology, 474: 144–153.CrossRefPubMedGoogle Scholar
  90. Yablonska S, Hoskins EE, Wells SI, Khan SA. 2013. Identification of miRNAs dysregulated in human foreskin keratinocytes (HFKs) expressing the human papillomavirus (HPV) Type 16 E6 and E7 oncoproteins. Microrna, 2: 2–13.CrossRefPubMedGoogle Scholar
  91. You H, Liu Y, Agrawal N, Prasad CK, Edwards JL, Osborne AF, Korourian S, Lowery CL, Hermonat PL. 2008. Multiple human papillomavirus types replicate in 3A trophoblasts. Placenta, 29: 30–38.CrossRefPubMedGoogle Scholar
  92. Zhang J, Li S, Yan Q, Chen X, Yang Y, Liu X, Wan X. 2013. Interferon-β induced microRNA-129-5p down-regulates HPV-18 E6 and E7 viral gene expression by targeting SP1 in cervical cancer cells. PLoS One, 8: e81366.CrossRefPubMedCentralPubMedGoogle Scholar
  93. Zheng ZM, Wang X. 2011. Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta, 1809: 668–677.CrossRefPubMedCentralPubMedGoogle Scholar
  94. zur Hausen H. 2009. Papillomaviruses in the causation of human cancers — a brief historical account. Virology, 384:260–265.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular GeneticsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations