Skip to main content

Recent advances in the study of Kaposi’s sarcoma-associated herpesvirus replication and pathogenesis

Abstract

It has now been over twenty years since a novel herpesviral genome was identified in Kaposi’s sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi’s sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.

This is a preview of subscription content, access via your institution.

References

  • Abend JR, Uldrick T, Ziegelbauer JM. 2010. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi’s sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol, 84: 12139–12151.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, McDonald AR, Lennette ET, Levy JA. 1995. Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science, 268: 582–583

    CAS  PubMed  Google Scholar 

  • An FQ, Folarin HM, Compitello N, Roth J, Gerson SL, McCrae KR, Fakhari FD, Dittmer DP, Renne R. 2006. Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi’s sarcoma-associated herpesvirus latency in vitro and in vivo. J Virol, 80: 4833–4846.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. 2014. KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog, 10: e1003847.

    PubMed Central  PubMed  Google Scholar 

  • Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM, Cesarman E. 1996. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (bc-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of epstein-barr virus. Blood, 88: 2648–2654.

    CAS  PubMed  Google Scholar 

  • Ashlock BM, Ma Q, Issac B, Mesri EA. 2014. Productively infected murine Kaposi’s sarcoma-like tumors define new animal models for studing and targeting KSHV oncogenesis and replication. PLoS One, 9: 1–15.

    Google Scholar 

  • Bai Z, Huang Y, Li W, Zhu Y, Jung JU, Lu C, Gao SJ. 2014. Genomewide mapping and screening of Kaposi’s sarcoma-associated herpesvirus (KSHV) 3′ untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs. J Virol, 88: 377–392.

    PubMed Central  PubMed  Google Scholar 

  • Ballestas ME, Chatis PA, Kaye KM. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 284: 641–644.

    CAS  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res, 21: 381–395.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bechtel JT, Liang Y, Hvidding J, Ganem D. 2003. Host range of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol, 77: 6474–6481.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125: 315–326.

    CAS  PubMed  Google Scholar 

  • Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B. 2010. Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood, 115: 4455–4463.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, Ramos JC. 2013. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest, 123: 2616–2628.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, Weinstein M, Glogau RG, Witte MH, Way DL, Kutzkey T, Herndier B, Levy JA. 2000. The restricted cellular host range of human herpesvirus 8. AIDS, 14: 1123–1133.

    CAS  PubMed  Google Scholar 

  • Borah S, Darricarrere N, Darnell A, Myoung J, Steitz JA. 2011. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog, 7: e1002300.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brinkmann MM, Pietrek M, Dittrich-Breiholz O, Kracht M, Schulz TF. 2007. Modulation of host gene expression by the K15 protein of Kaposi’s sarcoma-associated herpesvirus. J Virol, 81: 42–58.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brittany M. Ashlock QM, Biju Issac, Enrique A. Mesri 2014. Productively Infected Murine Kaposi’s Sarcoma-Like Tumors Define New Animal Models for Studing and Targeting KSHV Oncogenesis and Replication. PLOS ONE, 9: 1–15.

    Google Scholar 

  • Brulois KF, Chang H, Lee AS, Ensser A, Wong LY, Toth Z, Lee SH, Lee HR, Myoung J, Ganem D, Oh TK, Kim JF, Gao SJ, Jung JU. 2012. Construction and manipulation of a new Kaposi’s sarcoma-associated herpesvirus bacterial artificial chromosome clone. J Virol, 86: 9708–9720.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Budt M, Hristozova T, Hille G, Berger K, Brune W. 2011. Construction of a lytically replicating Kaposi’s sarcoma-associated herpesvirus. J Virol, 85: 10415–10420.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. 2005. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A, 102: 5570–5575.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Campbell M, Kung HJ, Izumiya Y. 2014. Long non-coding RNA and epigenetic gene regulation of KSHV. Viruses, 6: 4165–4177.

    PubMed Central  PubMed  Google Scholar 

  • Cannon JS, Ciufo D, Hawkins AL, Griffin CA, Borowitz MJ, Hayward GS, Ambinder RF. 2000. A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi’s sarcoma herpesvirus-containing supernatant. J Virol, 74: 10187–10193.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carroll PA, Brazeau E, Lagunoff M. 2004. Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology, 328: 7–18.

    PubMed Central  CAS  PubMed  Google Scholar 

  • CDC. 1981. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men—New York City and California. MMWR Morb Mortal Wkly Rep, 30: 305–308.

    Google Scholar 

  • Cesarman E, Mesri EA. 2007. Kaposi sarcoma-associated herpesvirus and other viruses in human lymphomagenesis. Curr Top Microbiol Immunol, 312: 263–287.

    CAS  PubMed  Google Scholar 

  • Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y. 1995. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (bc-1 and bc-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood, 86: 2708–2714.

    CAS  PubMed  Google Scholar 

  • Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM. 1996. Kaposi’s sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol, 149: 53–57.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chagas CA, Endo LH, Sakano E, Pinto GA, Brousset P, Vassallo J. 2006. Detection of herpesvirus type 8 (HHV8) in children’s tonsils and adenoids by immunohistochemistry and in situ hybridization. Int J Pediatr Otorhinolaryngol, 70: 65–72.

    PubMed  Google Scholar 

  • Chakraborty S, Veettil MV, Chandran B. 2012. Kaposi’s sarcoma associated herpesvirus entry into target cells. Front Microbiol, 3: 1–13.

    Google Scholar 

  • Chandran B. 2010. Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol, 84: 2188–2199.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang H, Wachtman LM, Pearson CB, Lee JS, Lee HR, Lee SH, Vieira J, Mansfield KG, Jung JU. 2009. Non-human primate model of Kaposi’s sarcoma-associated herpesvirus infection. PLOS Pathog, 5: e1000606.

    PubMed Central  PubMed  Google Scholar 

  • Chang HH, Ganem D. 2013. A unique herpesviral transcriptional program in KSHV-infected lymphatic endothelial cells leads to mTORC1 activation and rapamycin sensitivity. Cell Host Microbe, 13: 429–440.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang PC, Fitzgerald LD, Hsia DA, Izumiya Y, Wu CY, Hsieh WP, Lin SF, Campbell M, Lam KS, Luciw PA, Tepper CG, Kung HJ. 2011. Histone demethylase JMJD2A regulates Kaposi’s sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor. J Virol, 85: 3283–3293.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 266: 1865–1869.

    CAS  PubMed  Google Scholar 

  • Chang Y, Moore P. 2014. Twenty years of KSHV. Viruses, 6: 4258–4264.

    PubMed Central  PubMed  Google Scholar 

  • Chen HS, Lu F, Lieberman PM. 2013. Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol, 3: 251–259.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen HS, Wikramasinghe P, Showe L, Lieberman PM. 2012. Cohesins repress Kaposi’s sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol, 86: 9454–9464.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Gunther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, Hautaniemi S, Biberfeld P, Aaltonen L, Grundhoff A, Boshoff C, Alitalo K, Lehti K, Ojala PM. 2011. KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe, 10: 577–590.

    CAS  PubMed  Google Scholar 

  • Cho H, Kang H. 2012. KSHV infection of B-cell lymphoma using a modified KSHV BAC36 and co-culturing system. J Microbiol, 50: 285–292.

    CAS  PubMed  Google Scholar 

  • Clyde K, Glaunsinger BA. 2011. Deep sequencing reveals direct targets of gammaherpesvirus-induced mRNA decay and suggests that multiple mechanisms govern cellular transcript escape. PLoS One, 6: e19655.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dai L, Trillo-Tinoco J, Bai L, Kang B, Xu Z, Wen X, Del Valle L, Qin Z. 2014. Systematic analysis of a xenograft mice model for KSHV primary effusion lymphoma (PEL). PLoS One, 9: 1–9.

    CAS  Google Scholar 

  • Darnell RB. 2010. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA, 1: 266–286.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP. 2013. Epigenetic diversity of Kaposi’s sarcoma-associated herpesvirus. Nucleic Acids Res, 41: 2993–3009.

    PubMed Central  CAS  PubMed  Google Scholar 

  • de Wit E, de Laat W. 2012. A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26: 11–24.

    PubMed Central  PubMed  Google Scholar 

  • Deng Z, Wang Z, Lieberman PM. 2012. Telomeres and viruses: common themes of genome maintenance. Front Oncol, 2: 201.

    PubMed Central  PubMed  Google Scholar 

  • Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, Bare C, McCune JM, Ganem D. 1999. Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med, 190: 1857–1868.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dittmer DP, Damania B. 2007. KSHV-associated disease in the AIDS patient. Cancer Treat Res, 133: 129–139.

    CAS  PubMed  Google Scholar 

  • Dittmer DP, Damania B. 2013. Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)—an update. Curr Opin Virol, 3: 238–244.

    PubMed Central  PubMed  Google Scholar 

  • Dollery SJ, Santiago-Crespo RJ, Kardava L, Moir S, Berger EA. 2014. Efficient infection of a human B cell line with cell-free Kaposi’s sarcoma-associated herpesvirus. J Virol, 88: 1748–1757.

    PubMed Central  PubMed  Google Scholar 

  • Ellison TJ, Izumiya Y, Izumiya C, Luciw PA, Kung HJ. 2009. A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi’s sarcoma-associated herpesvirus. Virology, 387: 76–88.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ellison TJ, Kedes DH. 2014. Variable episomal silencing of a recombinant herpesvirus renders its encoded GFP an unreliable marker of infection in primary cells. PLoS One, 9: e111502.

    PubMed Central  PubMed  Google Scholar 

  • Feldman ER, Kara M, Coleman CB, Grau KR, Oko LM, Krueger BJ, Renne R, van Dyk LF, Tibbetts SA. 2014. Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. MBio, 5: e00981–00914.

    PubMed Central  PubMed  Google Scholar 

  • Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E. 1998. Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature, 394: 588–592.

    CAS  PubMed  Google Scholar 

  • Forte E, Raja AN, Shamulailatpam P, Manzano M, Schipma MJ, Casey JL, Gottwein E. 2015. MicroRNA-mediated transformation by the Kaposi’s sarcoma-associated herpesvirus Kaposin locus. J Virol, 89: 2333–2341.

    CAS  PubMed  Google Scholar 

  • Ganem D. 1997. KSHV and Kaposi’s sarcoma: the end of the beginning? Cell, 91: 157–160.

    CAS  PubMed  Google Scholar 

  • Ganem D. 2006. KSHV infection and the pathogenesis of Kaposi’s sarcoma. Annu Rev Pathol, 1: 273–296.

    CAS  PubMed  Google Scholar 

  • Ganem D. 2007. KSHV-induced oncogenesis. In: Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Arvin A, Campadelli-Fiume G, Mocarski E, et al. (eds). Cambridge: Cambridge University Press. Available: http://www.ncbi.nlm.nih.gov/books/NBK47373/

    Google Scholar 

  • Ganem D. 2010. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest, 120: 939–949.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ganem D, Ziegelbauer J. 2008. MicroRNAs of Kaposi’s sarcoma-associated herpes virus. Semin Cancer Biol, 18: 437–440.

    CAS  PubMed  Google Scholar 

  • Gao SJ, Deng JH, Zhou FC. 2003. Productive lytic replication of a recombinant Kaposi’s sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J Virol, 77: 9738–9749.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gao SJ, Kingsley L, Hoover DR, Spira TJ, Rinaldo CR, Saah A, Phair J, Detels R, Parry P, Chang Y, Moore PS. 1996. Seroconversion to antibodies against Kaposi’s sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi’s sarcoma. N Engl J Med, 335: 233–241.

    CAS  PubMed  Google Scholar 

  • Gavrilov A, Eivazova E, Priozhkova I, Lipinski M, Razin S, Vassetzky Y. 2009. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol, 567: 171–188.

    CAS  PubMed  Google Scholar 

  • Gorres KL, Daigle D, Mohanram S, Miller G. 2014. Activation and repression of Epstein-Barr Virus and Kaposi’s sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol, 88: 8028–8044.

    PubMed Central  PubMed  Google Scholar 

  • Gottlieb GJ, Ragaz A, Vogel JV, Friedman-Kien A, Rywlin AM, Weiner EA, Ackerman AB. 1981. A preliminary communication on extensively disseminated Kaposi’s sarcoma in young homosexual men. Am J Dermatopathol, 3: 111–114.

    CAS  PubMed  Google Scholar 

  • Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, Ohler U, Cullen BR. 2011. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe, 10: 515–526.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gramolelli S, Schulz TF. 2015. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol, 235: 368–380.

    CAS  PubMed  Google Scholar 

  • Grundhoff A, Ganem D. 2004. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest, 113: 124–136.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gunther T, Grundhoff A. 2010. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog, 6: e1000935.

    PubMed Central  PubMed  Google Scholar 

  • Gunther T, Schreiner S, Dobner T, Tessmer U, Grundhoff A. 2014. Influence of ND10 components on epigenetic determinants of early KSHV latency establishment. PLoS Pathog, 10: e1004274.

    PubMed Central  PubMed  Google Scholar 

  • Gwack Y, Byun H, Hwang S, Lim C, Choe J. 2001. CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol, 75: 1909–1917.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haecker I, Gay LA, Yang Y, Hu J, Morse AM, McIntyre LM, Renne R. 2012. Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog, 8: e1002884.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Haecker I, Renne R. 2014. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis. Crit Rev Eukaryot Gene Expr, 24: 101–116.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hassman LM, Ellison TJ, Kedes DH. 2011. KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest, 121: 752–768.

    PubMed Central  CAS  PubMed  Google Scholar 

  • He M, Zhang W, Bakken T, Schutten M, Toth Z, Jung JU, Gill P, Cannon M, Gao SJ. 2012. Cancer angiogenesis induced by Kaposi sarcoma-associated herpesvirus is mediated by EZH2. Cancer Res, 72: 3582–3592.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Herndier BG, Werner A, Arnstein P, Abbey NW, Demartis F, Cohen RL, Shuman MA, Levy JA. 1994. Characterization of a human Kaposi’s sarcoma cell line that induces angiogenic tumors in animals. AIDS, 8: 575–581.

    CAS  PubMed  Google Scholar 

  • Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M. 2004. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet, 36: 683–685.

    CAS  PubMed  Google Scholar 

  • Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. 2014. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog, 10: e1004240.

    PubMed Central  PubMed  Google Scholar 

  • Hurley EA, Thorley-Lawson DA. 1988. B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med, 168: 2059–2075.

    CAS  PubMed  Google Scholar 

  • Hyosun Cho HK. 2012. KSHV Infection of B-Cell Lymphoma Using a Modified KSHV BAC36 and Coculturing System. J Microbiol, 50: 285–292.

    PubMed  Google Scholar 

  • Iacovides D, Michael S, Achilleos C, Strati K. 2013. Shared mechanisms in stemness and carcinogenesis: lessons from oncogenic viruses. Front Cell Infect Microbiol, 3: 66.

    PubMed Central  PubMed  Google Scholar 

  • Jensen KB, Darnell RB. 2008. CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol, 488: 85–98.

    CAS  PubMed  Google Scholar 

  • Jha HC, Lu J, Verma SC, Banerjee S, Mehta D, Robertson ES. 2014. Kaposi’s sarcoma-associated herpesvirus genome programming during the early stages of primary infection of peripheral blood mononuclear cells. MBio, 5.pii: e02261–14. doi: 10.1128/mBio.02261-14.

    PubMed Central  PubMed  Google Scholar 

  • Jin B, Li Y, Robertson KD. 2011. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer, 2: 607–617.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13: 484–492.

    CAS  PubMed  Google Scholar 

  • Jones T, Ye F, Bedolla R, Huang Y, Meng J, Qian L, Pan H, Zhou F, Moody R, Wagner B, Arar M, Gao SJ. 2012. Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV. J Clin Invest, 122: 1076–1081.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang H, Cho H, Sung GH, Lieberman PM. 2013. CTCF regulates Kaposi’s sarcoma-associated herpesvirus latency transcription by nucleosome displacement and RNA polymerase programming. J Virol, 87: 1789–1799.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang H, Lieberman PM. 2011. Mechanism of glycyrrhizic acid inhibition of Kaposi’s sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol, 85: 11159–11169.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM. 2011a. Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog, 7: e1002140.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kang JG, Pripuzova N, Majerciak V, Kruhlak M, Le SY, Zheng ZM. 2011b. Kaposi’s sarcoma-associated herpesvirus ORF57 promotes escape of viral and human interleukin-6 from microRNA-mediated suppression. J Virol, 85: 2620–2630.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaposi M. 1872. Idiopathisches multiples Pigmentsarkom der Haut. Archiv für Dermatologie und Syphilis, 4: 265–273.

    Google Scholar 

  • Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. 2010. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A, 107: 2926–2931.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kati S, Tsao EH, Gunther T, Weidner-Glunde M, Rothamel T, Grundhoff A, Kellam P, Schulz TF. 2013. Activation of the B cell antigen receptor triggers reactivation of latent Kaposi’s sarcoma-associated herpesvirus in B cells. J Virol, 87: 8004–8016.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D. 1996. The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med, 2: 918–924.

    CAS  PubMed  Google Scholar 

  • Kim KY, Huerta SB, Izumiya C, Wang DH, Martinez A, Shevchenko B, Kung HJ, Campbell M, Izumiya Y. 2013. Kaposi’s sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen regulates the KSHV epigenome by association with the histone demethylase KDM3A. J Virol, 87: 6782–6793.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kornberg RD, Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98: 285–294.

    CAS  PubMed  Google Scholar 

  • Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D. 2002. De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol, 76: 2440–2448.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lefort S, Flamand L. 2009. Kaposi’s sarcoma-associated herpesvirus K-bZIP protein is necessary for lytic viral gene expression, DNA replication, and virion production in primary effusion lymphoma cell lines. J Virol, 83: 5869–5880.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lei X, Bai Z, Ye F, Huang Y, Gao SJ. 2010. Regulation of herpesvirus lifecycle by viral microRNAs. Virulence, 1: 433–435.

    PubMed Central  PubMed  Google Scholar 

  • Li Q, He M, Zhou F, Ye F, Gao SJ. 2014. Activation of Kaposi’s sarcoma-associated herpesvirus (KSHV) by inhibitors of class III histone deacetylases: identification of sirtuin 1 as a regulator of the KSHV life cycle. J Virol, 88: 6355–6367.

    PubMed Central  PubMed  Google Scholar 

  • Li X, Zhu F. 2009. Identification of the nuclear export and adjacent nuclear localization signals for ORF45 of Kaposi’s sarcoma-associated herpesvirus. J Virol, 83: 2531–2539.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang D, Gao Y, Lin X, He Z, Zhao Q, Deng Q, Lan K. 2011b. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res, 21: 793–806.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liang D, Hu H, Li S, Dong J, Wang X, Wang Y, He L, He Z, Gao Y, Gao SJ, Lan K. 2014. Oncogenic herpesvirus KSHV Hijacks BMP-Smad1-Id signaling to promote tumorigenesis. PLoS Pathog, 10: e1004253.

    PubMed Central  PubMed  Google Scholar 

  • Liang D, Lin X, Lan K. 2011a. Looking at Kaposi’s Sarcoma-Associated Herpesvirus-Host Interactions from a microRNA Viewpoint. Front Microbiol, 2: 271.

    PubMed Central  PubMed  Google Scholar 

  • Lieberman PM. 2013. Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol, 11: 863–875.

    CAS  PubMed  Google Scholar 

  • Lim C, Lee D, Seo T, Choi C, Choe J. 2003. Latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1. J Biol Chem, 278: 7397–7405.

    CAS  PubMed  Google Scholar 

  • Lin HR, Ganem D. 2011. Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility. Proc Natl Acad Sci U S A, 108: 5148–5153.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin X, Liang D, He Z, Deng Q, Robertson ES, Lan K. 2011. miRK12-7-5p encoded by Kaposi’s sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS One, 6: e16224.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin Z, Flemington EK. 2011. miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett, 305: 186–199.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu F, Stedman W, Yousef M, Renne R, Lieberman PM. 2010. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol, 84: 2697–2706.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. 2003. Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol, 77: 11425–11435.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lu J, Jha HC, Verma SC, Sun Z, Banerjee S, Dzeng R, Robertson ES. 2014. Kaposi’s sarcoma-associated herpesvirus-encoded LANA contributes to viral latent replication by activating phosphorylation of survivin. J Virol, 88: 4204–4217.

    PubMed Central  PubMed  Google Scholar 

  • Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, Robertson ES. 2012. The RBP-Jkappa binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog, 8: e1002479.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Luna RE, Zhou F, Baghian A, Chouljenko V, Forghani B, Gao SJ, Kousoulas KG. 2004. Kaposi’s sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J Virol, 78: 6389–6398.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM. 2007. Targeted disruption of Kaposi’s sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol, 81: 1062–1071.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malterer G, Dolken L, Haas J. 2011. The miRNA-targetome of KSHV and EBV in human B-cells. RNA Biol, 8: 30–34.

    CAS  PubMed  Google Scholar 

  • Martinez FP, Tang Q. 2012. Leucine zipper domain is required for Kaposi sarcoma-associated herpesvirus (KSHV) K-bZIP protein to interact with histone deacetylase and is important for KSHV replication. J Biol Chem, 287: 15622–15634.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mattsson K, Kiss C, Platt GM, Simpson GR, Kashuba E, Klein G, Schulz TF, Szekely L. 2002. Latent nuclear antigen of Kaposi’s sarcoma herpesvirus/human herpesvirus-8 induces and relocates RING3 to nuclear heterochromatin regions. J Gen Virol, 83: 179–188.

    CAS  PubMed  Google Scholar 

  • Mayama S, Cuevas LE, Sheldon J, Omar OH, Smith DH, Okong P, Silvel B, Hart CA, Schulz TF. 1998. Prevalence and transmission of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents. Int J Cancer, 77: 817–820.

    CAS  PubMed  Google Scholar 

  • Mercier A, Arias C, Madrid AS, Holdorf MM, Ganem D. 2014. Site-specific association with host and viral chromatin by Kaposi’s sarcoma-associated herpesvirus LANA and its reversal during lytic reactivation. J Virol, 88: 6762–6777.

    PubMed Central  PubMed  Google Scholar 

  • Merkenschlager M, Odom DT. 2013. CTCF and cohesin: linking gene regulatory elements with their targets. Cell, 152: 1285–1297.

    CAS  PubMed  Google Scholar 

  • Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MA, Posnett DN, Knowles DM, Asch AS. 1996. Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med, 183: 2385–2390.

    CAS  PubMed  Google Scholar 

  • Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer, 10: 707–719.

    CAS  PubMed  Google Scholar 

  • Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. 2007. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res, 97: 81–109.

    CAS  PubMed  Google Scholar 

  • Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y. 1997. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol, 71: 314–324.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miller G, Rigsby MO, Heston L, Grogan E, Sun R, Metroka C, Levy JA, Gao SJ, Chang Y, Moore P. 1996. Antibodies to butyrate-inducible antigens of Kaposi’s sarcoma-associated herpesvirus in patients with HIV-1 infection. N Engl J Med, 334: 1292–1297.

    CAS  PubMed  Google Scholar 

  • Moody R, Zhu Y, Huang Y, Cui X, Jones T, Bedolla R, Lei X, Bai Z, Gao SJ. 2013. KSHV microRNAs mediate cellular transformation and tumorigenesis by redundantly targeting cell growth and survival pathways. PLoS Pathog, 9: e1003857.

    PubMed Central  PubMed  Google Scholar 

  • Moore PS, Chang Y. 2010. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer, 10: 878–889.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA. 1999. Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol, 73: 6892–6902.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Myoung J, Ganem D. 2011a. Infection of lymphoblastoid cell lines by Kaposi’s sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol, 85: 9767–9777.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Myoung J, Ganem D. 2011b. Generation of a doxycycline-inducible KSHV producer cell line of endothelial origin: Maintenance of tight latency with efficient reactivation upon induction. J Virol Methods, 174: 12–21.

    PubMed Central  PubMed  Google Scholar 

  • Myoung J, Ganem D. 2011c. Infection of primary human tonsillar lymphoid cells by KSHV reveals frequent but abortive infection of T cells. Virology, 413: 1–11.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU. 2003. Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol, 77: 4205–4220.

    PubMed Central  CAS  PubMed  Google Scholar 

  • National Institutes of Health (NIH). 2014. Available: http://commonfund.nih.gov/4Dnucleome/index.

  • Nevels M, Nitzsche A, Paulus C. 2011. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol, 21: 154–180.

    CAS  PubMed  Google Scholar 

  • Niedermeier A, Talanin N, Chung EJ, Sells RE, Borris DL, Orenstein JM, Trepel JB, Blauvelt A. 2006. Histone deacetylase inhibitors induce apoptosis with minimal viral reactivation in cells infected with Kaposi’s sarcoma-associated herpesvirus. J Invest Dermatol, 126: 2516–2524.

    CAS  PubMed  Google Scholar 

  • Orzechowska BU, Powers MF, Sprague J, Li H, Yen B, Searles RP, Axthelm MK, Wong SW. 2008. Rhesus macaque rhadinovirus-associated non-hodgkin lymphoma: Animal model for KSHV-associated malignancies. Blood, 112: 4227–4234.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pantry SN, Medveczky PG. 2009. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus replication. Semin Cancer Biol, 19: 153–157.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Panyutich EA, Said JW, Miles SA. 1998. Infection of primary dermal microvascular endothelial cells by Kaposi’s sarcoma-associated herpesvirus. AIDS, 12: 467–472.

    CAS  PubMed  Google Scholar 

  • Paulus C, Nitzsche A, Nevels M. 2010. Chromatinisation of herpesvirus genomes. Rev Med Virol, 20: 34–50.

    CAS  PubMed  Google Scholar 

  • Peng C, Chen J, Tang W, Liu C, Chen X. 2014. Kaposi’s sarcoma-associated herpesvirus ORF6 gene is essential in viral lytic replication. PLoS One, 9: e99542.

    PubMed Central  PubMed  Google Scholar 

  • Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE. 1997. The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in scid mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology, 238: 22–29.

    CAS  PubMed  Google Scholar 

  • Plaisance-Bonstaff K, Choi HS, Beals T, Krueger BJ, Boss IW, Gay LA, Haecker I, Hu J, Renne R. 2014. KSHV miRNAs decrease expression of lytic genes in latently infected PEL and endothelial cells by targeting host transcription factors. Viruses, 6: 4005–4023.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Qin Z, Peruzzi F, Reiss K, Dai L. 2014. Role of host microRNAs in Kaposi’s sarcoma-associated herpesvirus pathogenesis. Viruses, 6: 4571–4580.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Quan L, Qiu T, Liang J, Li M, Zhang Y, Tao K. 2015. Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected Lymphoma Cells. Pathol Oncol Res. (Epub ahead of print)

    Google Scholar 

  • Raab-Traub N. 2012. Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol, 2: 453–458.

    CAS  PubMed  Google Scholar 

  • Ramalingam D, Kieffer-Kwon P, Ziegelbauer JM. 2012. Emerging themes from EBV and KSHV microRNA targets. Viruses, 4: 1687–1710.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renne R, Blackbourn D, Whitby D, Levy J, Ganem D. 1998. Limited Transmission of Kaposi’s Sarcoma-Associated Herpesvirus in Cultured Cells. J Virol, 72: 5182–5188.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D. 1996. Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med, 2: 342–346.

    CAS  PubMed  Google Scholar 

  • Rochford R, Mosier DE. 1995. Differential Epstein-Barr-Virus Gene-Expression in B-Cell Subsets Recovered from Lymphomas in Scid Mice after Transplantation of Human Peripheral-Blood Lymphocytes. J Virol, 69: 150–155.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossetto CC, Pari G. 2012. KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome. PLoS Pathog, 8: e1002680.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossetto CC, Pari GS. 2011. Kaposi’s sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation. J Virol, 85: 13290–13297.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossetto CC, Pari GS. 2014. PAN’s Labyrinth: Molecular biology of Kaposi’s sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA. Viruses, 6: 4212–4226.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rossetto CC, Tarrant-Elorza M, Verma S, Purushothaman P, Pari GS. 2013. Regulation of viral and cellular gene expression by Kaposi’s sarcoma-associated herpesvirus polyadenylated nucle ar RNA. J Virol, 87: 5540–5553.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K. 2004. Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi’s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol, 78: 7299–7310.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R. 2007. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog, 3: e65.

    PubMed Central  PubMed  Google Scholar 

  • Sarosiek KA, Cavallin LE, Bhatt S, Toomey NL, Natkunam Y, Blasini W, Gentles AJ, Ramos JC, Mesri EA, Lossos IS. 2010. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci U S A, 107: 13069–13074.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sathish N, Yuan Y. 2010. Functional characterization of Kaposi’s sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis. Virology, 407: 306–318.

    CAS  PubMed  Google Scholar 

  • Sexton BS, Avey D, Druliner BR, Fincher JA, Vera DL, Grau DJ, Borowsky ML, Gupta S, Girimurugan SB, Chicken E, Zhang J, Noble WS, Zhu F, Kingston RE, Dennis JH. 2014a. The spring-loaded genome: nucleosome redistributions are widespread, transient, and DNA-directed. Genome Res, 24: 251–259.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sexton BS, Druliner BR, Avey D, Zhu F, Dennis JH. 2014b. Changes in nucleosome occupancy occur in a chromosome specific manner. Genom Data, 2: 114–116.

    PubMed  Google Scholar 

  • Sexton BS, Druliner BR, Vera DL, Avey D, Zhu F, Dennis JH. 2015. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response. Science Advances. (Submitted for publication)

    Google Scholar 

  • Shin HJ, DeCotiis J, Giron M, Palmeri D, Lukac DM. 2014. Histone deacetylase classes I and II regulate Kaposi’s sarcoma-associated herpesvirus reactivation. J Virol, 88: 1281–1292.

    PubMed Central  PubMed  Google Scholar 

  • Sin SH, Roy D, Wang L, Staudt MR, Fakhari FD, Patel DD, Henry D, Harrington WJ, Jr., Damania BA, Dittmer DP. 2007. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood, 109: 2165–2173.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R. 2007. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol, 81: 12836–12845.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. 1995. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood, 86: 1276–1280.

    CAS  PubMed  Google Scholar 

  • Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R, Dittmer DP. 2004. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res, 64: 4790–4799.

    CAS  PubMed  Google Scholar 

  • Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. 2008. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J, 27: 654–666.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strang BL, Stow ND. 2005. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol, 79: 12487–12494.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sturzl M, Gaus D, Dirks WG, Ganem D, Jochmann R. 2013. Kaposi’s sarcoma-derived cell line SLK is not of endothelial origin, but is a contaminant from a known renal carcinoma cell line. Int J Cancer, 132: 1954–1958.

    PubMed  Google Scholar 

  • Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA. 1994. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol, 145: 818–826.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sun R, Lin S-F, Gradoville L, Yuan Y, Zhu F, Miller G. 1998. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A, 95: 10866–10871.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Szekely L, Kiss C, Mattsson K, Kashuba E, Pokrovskaja K, Juhasz A, Holmvall P, Klein G. 1999. Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin-associated nuclear bodies. J Gen Virol, 80: 2889–2900.

    CAS  PubMed  Google Scholar 

  • Toth Z, Brulois K, Jung JU. 2013a. The chromatin landscape of Kaposi’s sarcoma-associated herpesvirus. Viruses, 5: 1346–1373.

    PubMed Central  PubMed  Google Scholar 

  • Toth Z, Brulois K, Lee HR, Izumiya Y, Tepper C, Kung HJ, Jung JU. 2013b. Biphasic euchromatin-to-heterochromatin transition on the KSHV genome following de novo infection. PLoS Pathog, 9: e1003813.

    PubMed Central  PubMed  Google Scholar 

  • Toth Z, Brulois KF, Wong LY, Lee HR, Chung B, Jung JU. 2012. Negative elongation factor-mediated suppression of RNA polymerase II elongation of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. J Virol, 86: 9696–9707.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, Brulois KF, Lee S, Buckley JD, Laird PW, Marquez VE, Jung JU. 2010. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog, 6: e1001013.

    PubMed Central  PubMed  Google Scholar 

  • Towata T, Komizu Y, Suzu S, Matsumoto Y, Ueoka R, Okada S. 2010. Hybrid liposomes inhibit the growth of primary effusion lymphoma in vitro and in vivo. Leuk Res, 34: 906–911.

    CAS  PubMed  Google Scholar 

  • Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol, 8: e1000414.

    PubMed Central  PubMed  Google Scholar 

  • Uldrick TS, Whitby D. 2011. Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett, 305: 150–162.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ule J, Jensen K, Mele A, Darnell RB. 2005. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 37: 376–386.

    CAS  PubMed  Google Scholar 

  • Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. 2003. CLIP identifies Nova-regulated RNA networks in the brain. Science, 302: 1212–1215.

    CAS  PubMed  Google Scholar 

  • Verma SC, Robertson ES. 2003. Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus. FEMS Microbiol Lett, 222: 155–163.

    CAS  PubMed  Google Scholar 

  • Vieira J, Huang ML, Koelle DM, Corey L. 1997. Transmissible Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in saliva of men with a history of Kaposi’s sarcoma. J Virol, 71: 7083–7087.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vieira J, O’Hearn PM. 2004. Use of the red fluorescent protein as a marker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology, 325: 225–240.

    CAS  PubMed  Google Scholar 

  • Viejo-Borbolla A, Kati E, Sheldon JA, Nathan K, Mattsson K, Szekely L, Schulz TF. 2003. A Domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi’s sarcoma-associated Herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J Virol, 77: 7093–7100.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Walker LR, Hussein HA, Akula SM. 2014. Disintegrin-like domain of glycoprotein B regulates Kaposi’s sarcoma-associated herpesvirus infection of cells. J Gen Virol, 95: 1770–1782.

    CAS  PubMed  Google Scholar 

  • Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C. 2004. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet, 36: 687–693.

    CAS  PubMed  Google Scholar 

  • Wang LX, Kang G, Kumar P, Lu W, Li Y, Zhou Y, Li Q, Wood C. 2014. Humanized-blt mouse model of Kaposi’s sarcoma-associated herpesvirus infection. Proc Natl Acad Sci U S A., 111: 3146–3151.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang SE, Wu FY, Yu Y, Hayward GS. 2003. CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol, 77: 9590–9612.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Sturzl M, Kerjaschki D, Alitalo K, Tschachler E. 1999. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab Invest, 79: 243–251.

    CAS  PubMed  Google Scholar 

  • Woodcock CL, Ghosh RP. 2010. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol, 2: a000596.

    PubMed Central  PubMed  Google Scholar 

  • Xu Y, Rodriguez-Huete A, Pari GS. 2006. Evaluation of the lytic origins of replication of Kaposi’s sarcoma-associated virus/human herpesvirus 8 in the context of the viral genome. J Virol, 80: 9905–9909.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yakushko Y, Hackmann C, Gunther T, Ruckert J, Henke M, Koste L, Alkharsah K, Bohne J, Grundhoff A, Schulz TF, Henke-Gendo C. 2011. Kaposi’s sarcoma-associated herpesvirus bacterial artificial chromosome contains a duplication of a long unique-region fragment within the terminal repeat region. J Virol, 85: 4612–4617.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Boss IW, McIntyre LM, Renne R. 2014. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells. BMC Genomics, 15: 668.

    PubMed Central  PubMed  Google Scholar 

  • Ye FC, Zhou FC, Yoo SM, Xie JP, Browning PJ, Gao SJ. 2004. Disruption of Kaposi’s sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J Virol, 78: 11121–11129.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ye J, Gradoville L, Daigle D, Miller G. 2007. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi’s sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol, 81: 9279–9291.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yoo SM, Ahn AK, Seo T, Hong HB, Chung MA, Jung SD, Cho H, Lee MS. 2008. Centrifugal enhancement of Kaposi’s sarcoma-associated virus infection of human endothelial cells in vitro. J Virol Methods, 154: 160–166.

    CAS  PubMed  Google Scholar 

  • Young LS, Murray PG. 2003. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene, 22: 5108–5121.

    CAS  PubMed  Google Scholar 

  • Yu X, Shahir AM, Sha J, Feng Z, Eapen B, Nithianantham S, Das B, Karn J, Weinberg A, Bissada NF, Ye F. 2014. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi’s sarcoma-associated herpesvirus replication. J Virol, 88: 4466–4479.

    PubMed Central  PubMed  Google Scholar 

  • Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, Gao SJ. 2002. Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: Application for genetic analysis. J Virol, 76: 6185–6196.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu FX, Li X, Zhou F, Gao SJ, Yuan Y. 2006. Functional characterization of Kaposi’s sarcoma-associated herpesvirus ORF45 by bacterial artificial chromosome-based mutagenesis. J Virol, 80: 12187–12196.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Y, Haecker I, Yang Y, Gao SJ, Renne R. 2013. gamma-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Curr Opin Virol, 3: 266–275.

    CAS  PubMed  Google Scholar 

  • Ziegelbauer JM. 2011. Functions of Kaposi’s sarcoma-associated herpesvirus microRNAs. Biochim Biophys Acta, 1809: 623–630.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanxiu Zhu.

Additional information

ORCID: 0000-0002-4189-7008

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avey, D., Brewers, B. & Zhu, F. Recent advances in the study of Kaposi’s sarcoma-associated herpesvirus replication and pathogenesis. Virol. Sin. 30, 130–145 (2015). https://doi.org/10.1007/s12250-015-3595-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-015-3595-2

Keywords

  • Kaposi’s sarcoma-associated herpesvirus (KSHV)
  • Kaposi’s sarcoma
  • epigenetic
  • epigenome
  • herpesvirus
  • oncovirus
  • chromatin