Advertisement

Virologica Sinica

, Volume 30, Issue 2, pp 130–145 | Cite as

Recent advances in the study of Kaposi’s sarcoma-associated herpesvirus replication and pathogenesis

  • Denis Avey
  • Brittany Brewers
  • Fanxiu Zhu
Review

Abstract

It has now been over twenty years since a novel herpesviral genome was identified in Kaposi’s sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi’s sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.

Keywords

Kaposi’s sarcoma-associated herpesvirus (KSHV) Kaposi’s sarcoma epigenetic epigenome herpesvirus oncovirus chromatin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abend JR, Uldrick T, Ziegelbauer JM. 2010. Regulation of tumor necrosis factor-like weak inducer of apoptosis receptor protein (TWEAKR) expression by Kaposi’s sarcoma-associated herpesvirus microRNA prevents TWEAK-induced apoptosis and inflammatory cytokine expression. J Virol, 84: 12139–12151.PubMedCentralPubMedGoogle Scholar
  2. Ambroziak JA, Blackbourn DJ, Herndier BG, Glogau RG, Gullett JH, McDonald AR, Lennette ET, Levy JA. 1995. Herpes-like sequences in HIV-infected and uninfected Kaposi’s sarcoma patients. Science, 268: 582–583PubMedGoogle Scholar
  3. An FQ, Folarin HM, Compitello N, Roth J, Gerson SL, McCrae KR, Fakhari FD, Dittmer DP, Renne R. 2006. Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi’s sarcoma-associated herpesvirus latency in vitro and in vivo. J Virol, 80: 4833–4846.PubMedCentralPubMedGoogle Scholar
  4. Arias C, Weisburd B, Stern-Ginossar N, Mercier A, Madrid AS, Bellare P, Holdorf M, Weissman JS, Ganem D. 2014. KSHV 2.0: a comprehensive annotation of the Kaposi’s sarcoma-associated herpesvirus genome using next-generation sequencing reveals novel genomic and functional features. PLoS Pathog, 10: e1003847.PubMedCentralPubMedGoogle Scholar
  5. Arvanitakis L, Mesri EA, Nador RG, Said JW, Asch AS, Knowles DM, Cesarman E. 1996. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (bc-3) harboring Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of epstein-barr virus. Blood, 88: 2648–2654.PubMedGoogle Scholar
  6. Ashlock BM, Ma Q, Issac B, Mesri EA. 2014. Productively infected murine Kaposi’s sarcoma-like tumors define new animal models for studing and targeting KSHV oncogenesis and replication. PLoS One, 9: 1–15.Google Scholar
  7. Bai Z, Huang Y, Li W, Zhu Y, Jung JU, Lu C, Gao SJ. 2014. Genomewide mapping and screening of Kaposi’s sarcoma-associated herpesvirus (KSHV) 3′ untranslated regions identify bicistronic and polycistronic viral transcripts as frequent targets of KSHV microRNAs. J Virol, 88: 377–392.PubMedCentralPubMedGoogle Scholar
  8. Ballestas ME, Chatis PA, Kaye KM. 1999. Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science, 284: 641–644.PubMedGoogle Scholar
  9. Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res, 21: 381–395.PubMedCentralPubMedGoogle Scholar
  10. Bechtel JT, Liang Y, Hvidding J, Ganem D. 2003. Host range of Kaposi’s sarcoma-associated herpesvirus in cultured cells. J Virol, 77: 6474–6481.PubMedCentralPubMedGoogle Scholar
  11. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 125: 315–326.PubMedGoogle Scholar
  12. Bhatt AP, Bhende PM, Sin SH, Roy D, Dittmer DP, Damania B. 2010. Dual inhibition of PI3K and mTOR inhibits autocrine and paracrine proliferative loops in PI3K/Akt/mTOR-addicted lymphomas. Blood, 115: 4455–4463.PubMedCentralPubMedGoogle Scholar
  13. Bhatt S, Ashlock BM, Toomey NL, Diaz LA, Mesri EA, Lossos IS, Ramos JC. 2013. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma. J Clin Invest, 123: 2616–2628.PubMedCentralPubMedGoogle Scholar
  14. Blackbourn DJ, Lennette E, Klencke B, Moses A, Chandran B, Weinstein M, Glogau RG, Witte MH, Way DL, Kutzkey T, Herndier B, Levy JA. 2000. The restricted cellular host range of human herpesvirus 8. AIDS, 14: 1123–1133.PubMedGoogle Scholar
  15. Borah S, Darricarrere N, Darnell A, Myoung J, Steitz JA. 2011. A viral nuclear noncoding RNA binds re-localized poly(A) binding protein and is required for late KSHV gene expression. PLoS Pathog, 7: e1002300.PubMedCentralPubMedGoogle Scholar
  16. Brinkmann MM, Pietrek M, Dittrich-Breiholz O, Kracht M, Schulz TF. 2007. Modulation of host gene expression by the K15 protein of Kaposi’s sarcoma-associated herpesvirus. J Virol, 81: 42–58.PubMedCentralPubMedGoogle Scholar
  17. Brittany M. Ashlock QM, Biju Issac, Enrique A. Mesri 2014. Productively Infected Murine Kaposi’s Sarcoma-Like Tumors Define New Animal Models for Studing and Targeting KSHV Oncogenesis and Replication. PLOS ONE, 9: 1–15.Google Scholar
  18. Brulois KF, Chang H, Lee AS, Ensser A, Wong LY, Toth Z, Lee SH, Lee HR, Myoung J, Ganem D, Oh TK, Kim JF, Gao SJ, Jung JU. 2012. Construction and manipulation of a new Kaposi’s sarcoma-associated herpesvirus bacterial artificial chromosome clone. J Virol, 86: 9708–9720.PubMedCentralPubMedGoogle Scholar
  19. Budt M, Hristozova T, Hille G, Berger K, Brune W. 2011. Construction of a lytically replicating Kaposi’s sarcoma-associated herpesvirus. J Virol, 85: 10415–10420.PubMedCentralPubMedGoogle Scholar
  20. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. 2005. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A, 102: 5570–5575.PubMedCentralPubMedGoogle Scholar
  21. Campbell M, Kung HJ, Izumiya Y. 2014. Long non-coding RNA and epigenetic gene regulation of KSHV. Viruses, 6: 4165–4177.PubMedCentralPubMedGoogle Scholar
  22. Cannon JS, Ciufo D, Hawkins AL, Griffin CA, Borowitz MJ, Hayward GS, Ambinder RF. 2000. A new primary effusion lymphoma-derived cell line yields a highly infectious Kaposi’s sarcoma herpesvirus-containing supernatant. J Virol, 74: 10187–10193.PubMedCentralPubMedGoogle Scholar
  23. Carroll PA, Brazeau E, Lagunoff M. 2004. Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology, 328: 7–18.PubMedCentralPubMedGoogle Scholar
  24. CDC. 1981. Kaposi’s sarcoma and Pneumocystis pneumonia among homosexual men—New York City and California. MMWR Morb Mortal Wkly Rep, 30: 305–308.Google Scholar
  25. Cesarman E, Mesri EA. 2007. Kaposi sarcoma-associated herpesvirus and other viruses in human lymphomagenesis. Curr Top Microbiol Immunol, 312: 263–287.PubMedGoogle Scholar
  26. Cesarman E, Moore PS, Rao PH, Inghirami G, Knowles DM, Chang Y. 1995. In vitro establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (bc-1 and bc-2) containing Kaposi’s sarcoma-associated herpesvirus-like (KSHV) DNA sequences. Blood, 86: 2708–2714.PubMedGoogle Scholar
  27. Cesarman E, Nador RG, Aozasa K, Delsol G, Said JW, Knowles DM. 1996. Kaposi’s sarcoma-associated herpesvirus in non-AIDS related lymphomas occurring in body cavities. Am J Pathol, 149: 53–57.PubMedCentralPubMedGoogle Scholar
  28. Chagas CA, Endo LH, Sakano E, Pinto GA, Brousset P, Vassallo J. 2006. Detection of herpesvirus type 8 (HHV8) in children’s tonsils and adenoids by immunohistochemistry and in situ hybridization. Int J Pediatr Otorhinolaryngol, 70: 65–72.PubMedGoogle Scholar
  29. Chakraborty S, Veettil MV, Chandran B. 2012. Kaposi’s sarcoma associated herpesvirus entry into target cells. Front Microbiol, 3: 1–13.Google Scholar
  30. Chandran B. 2010. Early events in Kaposi’s sarcoma-associated herpesvirus infection of target cells. J Virol, 84: 2188–2199.PubMedCentralPubMedGoogle Scholar
  31. Chang H, Wachtman LM, Pearson CB, Lee JS, Lee HR, Lee SH, Vieira J, Mansfield KG, Jung JU. 2009. Non-human primate model of Kaposi’s sarcoma-associated herpesvirus infection. PLOS Pathog, 5: e1000606.PubMedCentralPubMedGoogle Scholar
  32. Chang HH, Ganem D. 2013. A unique herpesviral transcriptional program in KSHV-infected lymphatic endothelial cells leads to mTORC1 activation and rapamycin sensitivity. Cell Host Microbe, 13: 429–440.PubMedCentralPubMedGoogle Scholar
  33. Chang PC, Fitzgerald LD, Hsia DA, Izumiya Y, Wu CY, Hsieh WP, Lin SF, Campbell M, Lam KS, Luciw PA, Tepper CG, Kung HJ. 2011. Histone demethylase JMJD2A regulates Kaposi’s sarcoma-associated herpesvirus replication and is targeted by a viral transcriptional factor. J Virol, 85: 3283–3293.PubMedCentralPubMedGoogle Scholar
  34. Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM, Moore PS. 1994. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science, 266: 1865–1869.PubMedGoogle Scholar
  35. Chang Y, Moore P. 2014. Twenty years of KSHV. Viruses, 6: 4258–4264.PubMedCentralPubMedGoogle Scholar
  36. Chen HS, Lu F, Lieberman PM. 2013. Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol, 3: 251–259.PubMedCentralPubMedGoogle Scholar
  37. Chen HS, Wikramasinghe P, Showe L, Lieberman PM. 2012. Cohesins repress Kaposi’s sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol, 86: 9454–9464.PubMedCentralPubMedGoogle Scholar
  38. Cheng F, Pekkonen P, Laurinavicius S, Sugiyama N, Henderson S, Gunther T, Rantanen V, Kaivanto E, Aavikko M, Sarek G, Hautaniemi S, Biberfeld P, Aaltonen L, Grundhoff A, Boshoff C, Alitalo K, Lehti K, Ojala PM. 2011. KSHV-initiated notch activation leads to membrane-type-1 matrix metalloproteinase-dependent lymphatic endothelial-to-mesenchymal transition. Cell Host Microbe, 10: 577–590.PubMedGoogle Scholar
  39. Cho H, Kang H. 2012. KSHV infection of B-cell lymphoma using a modified KSHV BAC36 and co-culturing system. J Microbiol, 50: 285–292.PubMedGoogle Scholar
  40. Clyde K, Glaunsinger BA. 2011. Deep sequencing reveals direct targets of gammaherpesvirus-induced mRNA decay and suggests that multiple mechanisms govern cellular transcript escape. PLoS One, 6: e19655.PubMedCentralPubMedGoogle Scholar
  41. Dai L, Trillo-Tinoco J, Bai L, Kang B, Xu Z, Wen X, Del Valle L, Qin Z. 2014. Systematic analysis of a xenograft mice model for KSHV primary effusion lymphoma (PEL). PLoS One, 9: 1–9.Google Scholar
  42. Darnell RB. 2010. HITS-CLIP: panoramic views of protein-RNA regulation in living cells. Wiley Interdiscip Rev RNA, 1: 266–286.PubMedCentralPubMedGoogle Scholar
  43. Darst RP, Haecker I, Pardo CE, Renne R, Kladde MP. 2013. Epigenetic diversity of Kaposi’s sarcoma-associated herpesvirus. Nucleic Acids Res, 41: 2993–3009.PubMedCentralPubMedGoogle Scholar
  44. de Wit E, de Laat W. 2012. A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26: 11–24.PubMedCentralPubMedGoogle Scholar
  45. Deng Z, Wang Z, Lieberman PM. 2012. Telomeres and viruses: common themes of genome maintenance. Front Oncol, 2: 201.PubMedCentralPubMedGoogle Scholar
  46. Dittmer D, Stoddart C, Renne R, Linquist-Stepps V, Moreno ME, Bare C, McCune JM, Ganem D. 1999. Experimental transmission of Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) to SCID-hu Thy/Liv mice. J Exp Med, 190: 1857–1868.PubMedCentralPubMedGoogle Scholar
  47. Dittmer DP, Damania B. 2007. KSHV-associated disease in the AIDS patient. Cancer Treat Res, 133: 129–139.PubMedGoogle Scholar
  48. Dittmer DP, Damania B. 2013. Kaposi sarcoma associated herpesvirus pathogenesis (KSHV)—an update. Curr Opin Virol, 3: 238–244.PubMedCentralPubMedGoogle Scholar
  49. Dollery SJ, Santiago-Crespo RJ, Kardava L, Moir S, Berger EA. 2014. Efficient infection of a human B cell line with cell-free Kaposi’s sarcoma-associated herpesvirus. J Virol, 88: 1748–1757.PubMedCentralPubMedGoogle Scholar
  50. Ellison TJ, Izumiya Y, Izumiya C, Luciw PA, Kung HJ. 2009. A comprehensive analysis of recruitment and transactivation potential of K-Rta and K-bZIP during reactivation of Kaposi’s sarcoma-associated herpesvirus. Virology, 387: 76–88.PubMedCentralPubMedGoogle Scholar
  51. Ellison TJ, Kedes DH. 2014. Variable episomal silencing of a recombinant herpesvirus renders its encoded GFP an unreliable marker of infection in primary cells. PLoS One, 9: e111502.PubMedCentralPubMedGoogle Scholar
  52. Feldman ER, Kara M, Coleman CB, Grau KR, Oko LM, Krueger BJ, Renne R, van Dyk LF, Tibbetts SA. 2014. Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. MBio, 5: e00981–00914.PubMedCentralPubMedGoogle Scholar
  53. Flore O, Rafii S, Ely S, O’Leary JJ, Hyjek EM, Cesarman E. 1998. Transformation of primary human endothelial cells by Kaposi’s sarcoma-associated herpesvirus. Nature, 394: 588–592.PubMedGoogle Scholar
  54. Forte E, Raja AN, Shamulailatpam P, Manzano M, Schipma MJ, Casey JL, Gottwein E. 2015. MicroRNA-mediated transformation by the Kaposi’s sarcoma-associated herpesvirus Kaposin locus. J Virol, 89: 2333–2341.PubMedGoogle Scholar
  55. Ganem D. 1997. KSHV and Kaposi’s sarcoma: the end of the beginning? Cell, 91: 157–160.PubMedGoogle Scholar
  56. Ganem D. 2006. KSHV infection and the pathogenesis of Kaposi’s sarcoma. Annu Rev Pathol, 1: 273–296.PubMedGoogle Scholar
  57. Ganem D. 2007. KSHV-induced oncogenesis. In: Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis, Arvin A, Campadelli-Fiume G, Mocarski E, et al. (eds). Cambridge: Cambridge University Press. Available: http://www.ncbi.nlm.nih.gov/books/NBK47373/ Google Scholar
  58. Ganem D. 2010. KSHV and the pathogenesis of Kaposi sarcoma: listening to human biology and medicine. J Clin Invest, 120: 939–949.PubMedCentralPubMedGoogle Scholar
  59. Ganem D, Ziegelbauer J. 2008. MicroRNAs of Kaposi’s sarcoma-associated herpes virus. Semin Cancer Biol, 18: 437–440.PubMedGoogle Scholar
  60. Gao SJ, Deng JH, Zhou FC. 2003. Productive lytic replication of a recombinant Kaposi’s sarcoma-associated herpesvirus in efficient primary infection of primary human endothelial cells. J Virol, 77: 9738–9749.PubMedCentralPubMedGoogle Scholar
  61. Gao SJ, Kingsley L, Hoover DR, Spira TJ, Rinaldo CR, Saah A, Phair J, Detels R, Parry P, Chang Y, Moore PS. 1996. Seroconversion to antibodies against Kaposi’s sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi’s sarcoma. N Engl J Med, 335: 233–241.PubMedGoogle Scholar
  62. Gavrilov A, Eivazova E, Priozhkova I, Lipinski M, Razin S, Vassetzky Y. 2009. Chromosome conformation capture (from 3C to 5C) and its ChIP-based modification. Methods Mol Biol, 567: 171–188.PubMedGoogle Scholar
  63. Gorres KL, Daigle D, Mohanram S, Miller G. 2014. Activation and repression of Epstein-Barr Virus and Kaposi’s sarcoma-associated herpesvirus lytic cycles by short- and medium-chain fatty acids. J Virol, 88: 8028–8044.PubMedCentralPubMedGoogle Scholar
  64. Gottlieb GJ, Ragaz A, Vogel JV, Friedman-Kien A, Rywlin AM, Weiner EA, Ackerman AB. 1981. A preliminary communication on extensively disseminated Kaposi’s sarcoma in young homosexual men. Am J Dermatopathol, 3: 111–114.PubMedGoogle Scholar
  65. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, Shamulailatpam P, Love CL, Dave SS, Tuschl T, Ohler U, Cullen BR. 2011. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe, 10: 515–526.PubMedCentralPubMedGoogle Scholar
  66. Gramolelli S, Schulz TF. 2015. The role of Kaposi sarcoma-associated herpesvirus in the pathogenesis of Kaposi sarcoma. J Pathol, 235: 368–380.PubMedGoogle Scholar
  67. Grundhoff A, Ganem D. 2004. Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest, 113: 124–136.PubMedCentralPubMedGoogle Scholar
  68. Gunther T, Grundhoff A. 2010. The epigenetic landscape of latent Kaposi sarcoma-associated herpesvirus genomes. PLoS Pathog, 6: e1000935.PubMedCentralPubMedGoogle Scholar
  69. Gunther T, Schreiner S, Dobner T, Tessmer U, Grundhoff A. 2014. Influence of ND10 components on epigenetic determinants of early KSHV latency establishment. PLoS Pathog, 10: e1004274.PubMedCentralPubMedGoogle Scholar
  70. Gwack Y, Byun H, Hwang S, Lim C, Choe J. 2001. CREB-binding protein and histone deacetylase regulate the transcriptional activity of Kaposi’s sarcoma-associated herpesvirus open reading frame 50. J Virol, 75: 1909–1917.PubMedCentralPubMedGoogle Scholar
  71. Haecker I, Gay LA, Yang Y, Hu J, Morse AM, McIntyre LM, Renne R. 2012. Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog, 8: e1002884.PubMedCentralPubMedGoogle Scholar
  72. Haecker I, Renne R. 2014. HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis. Crit Rev Eukaryot Gene Expr, 24: 101–116.PubMedCentralPubMedGoogle Scholar
  73. Hassman LM, Ellison TJ, Kedes DH. 2011. KSHV infects a subset of human tonsillar B cells, driving proliferation and plasmablast differentiation. J Clin Invest, 121: 752–768.PubMedCentralPubMedGoogle Scholar
  74. He M, Zhang W, Bakken T, Schutten M, Toth Z, Jung JU, Gill P, Cannon M, Gao SJ. 2012. Cancer angiogenesis induced by Kaposi sarcoma-associated herpesvirus is mediated by EZH2. Cancer Res, 72: 3582–3592.PubMedCentralPubMedGoogle Scholar
  75. Herndier BG, Werner A, Arnstein P, Abbey NW, Demartis F, Cohen RL, Shuman MA, Levy JA. 1994. Characterization of a human Kaposi’s sarcoma cell line that induces angiogenic tumors in animals. AIDS, 8: 575–581.PubMedGoogle Scholar
  76. Hong YK, Foreman K, Shin JW, Hirakawa S, Curry CL, Sage DR, Libermann T, Dezube BJ, Fingeroth JD, Detmar M. 2004. Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet, 36: 683–685.PubMedGoogle Scholar
  77. Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. 2014. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog, 10: e1004240.PubMedCentralPubMedGoogle Scholar
  78. Hurley EA, Thorley-Lawson DA. 1988. B cell activation and the establishment of Epstein-Barr virus latency. J Exp Med, 168: 2059–2075.PubMedGoogle Scholar
  79. Hyosun Cho HK. 2012. KSHV Infection of B-Cell Lymphoma Using a Modified KSHV BAC36 and Coculturing System. J Microbiol, 50: 285–292.PubMedGoogle Scholar
  80. Iacovides D, Michael S, Achilleos C, Strati K. 2013. Shared mechanisms in stemness and carcinogenesis: lessons from oncogenic viruses. Front Cell Infect Microbiol, 3: 66.PubMedCentralPubMedGoogle Scholar
  81. Jensen KB, Darnell RB. 2008. CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol, 488: 85–98.PubMedGoogle Scholar
  82. Jha HC, Lu J, Verma SC, Banerjee S, Mehta D, Robertson ES. 2014. Kaposi’s sarcoma-associated herpesvirus genome programming during the early stages of primary infection of peripheral blood mononuclear cells. MBio, 5.pii: e02261–14. doi: 10.1128/mBio.02261-14.PubMedCentralPubMedGoogle Scholar
  83. Jin B, Li Y, Robertson KD. 2011. DNA methylation: superior or subordinate in the epigenetic hierarchy? Genes Cancer, 2: 607–617.PubMedCentralPubMedGoogle Scholar
  84. Jones PA. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet, 13: 484–492.PubMedGoogle Scholar
  85. Jones T, Ye F, Bedolla R, Huang Y, Meng J, Qian L, Pan H, Zhou F, Moody R, Wagner B, Arar M, Gao SJ. 2012. Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV. J Clin Invest, 122: 1076–1081.PubMedCentralPubMedGoogle Scholar
  86. Kang H, Cho H, Sung GH, Lieberman PM. 2013. CTCF regulates Kaposi’s sarcoma-associated herpesvirus latency transcription by nucleosome displacement and RNA polymerase programming. J Virol, 87: 1789–1799.PubMedCentralPubMedGoogle Scholar
  87. Kang H, Lieberman PM. 2011. Mechanism of glycyrrhizic acid inhibition of Kaposi’s sarcoma-associated herpesvirus: disruption of CTCF-cohesin-mediated RNA polymerase II pausing and sister chromatid cohesion. J Virol, 85: 11159–11169.PubMedCentralPubMedGoogle Scholar
  88. Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM. 2011a. Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog, 7: e1002140.PubMedCentralPubMedGoogle Scholar
  89. Kang JG, Pripuzova N, Majerciak V, Kruhlak M, Le SY, Zheng ZM. 2011b. Kaposi’s sarcoma-associated herpesvirus ORF57 promotes escape of viral and human interleukin-6 from microRNA-mediated suppression. J Virol, 85: 2620–2630.PubMedCentralPubMedGoogle Scholar
  90. Kaposi M. 1872. Idiopathisches multiples Pigmentsarkom der Haut. Archiv für Dermatologie und Syphilis, 4: 265–273.Google Scholar
  91. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M. 2010. Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A, 107: 2926–2931.PubMedCentralPubMedGoogle Scholar
  92. Kati S, Tsao EH, Gunther T, Weidner-Glunde M, Rothamel T, Grundhoff A, Kellam P, Schulz TF. 2013. Activation of the B cell antigen receptor triggers reactivation of latent Kaposi’s sarcoma-associated herpesvirus in B cells. J Virol, 87: 8004–8016.PubMedCentralPubMedGoogle Scholar
  93. Kedes DH, Operskalski E, Busch M, Kohn R, Flood J, Ganem D. 1996. The seroepidemiology of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nat Med, 2: 918–924.PubMedGoogle Scholar
  94. Kim KY, Huerta SB, Izumiya C, Wang DH, Martinez A, Shevchenko B, Kung HJ, Campbell M, Izumiya Y. 2013. Kaposi’s sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen regulates the KSHV epigenome by association with the histone demethylase KDM3A. J Virol, 87: 6782–6793.PubMedCentralPubMedGoogle Scholar
  95. Kornberg RD, Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell, 98: 285–294.PubMedGoogle Scholar
  96. Lagunoff M, Bechtel J, Venetsanakos E, Roy AM, Abbey N, Herndier B, McMahon M, Ganem D. 2002. De novo infection and serial transmission of Kaposi’s sarcoma-associated herpesvirus in cultured endothelial cells. J Virol, 76: 2440–2448.PubMedCentralPubMedGoogle Scholar
  97. Lefort S, Flamand L. 2009. Kaposi’s sarcoma-associated herpesvirus K-bZIP protein is necessary for lytic viral gene expression, DNA replication, and virion production in primary effusion lymphoma cell lines. J Virol, 83: 5869–5880.PubMedCentralPubMedGoogle Scholar
  98. Lei X, Bai Z, Ye F, Huang Y, Gao SJ. 2010. Regulation of herpesvirus lifecycle by viral microRNAs. Virulence, 1: 433–435.PubMedCentralPubMedGoogle Scholar
  99. Li Q, He M, Zhou F, Ye F, Gao SJ. 2014. Activation of Kaposi’s sarcoma-associated herpesvirus (KSHV) by inhibitors of class III histone deacetylases: identification of sirtuin 1 as a regulator of the KSHV life cycle. J Virol, 88: 6355–6367.PubMedCentralPubMedGoogle Scholar
  100. Li X, Zhu F. 2009. Identification of the nuclear export and adjacent nuclear localization signals for ORF45 of Kaposi’s sarcoma-associated herpesvirus. J Virol, 83: 2531–2539.PubMedCentralPubMedGoogle Scholar
  101. Liang D, Gao Y, Lin X, He Z, Zhao Q, Deng Q, Lan K. 2011b. A human herpesvirus miRNA attenuates interferon signaling and contributes to maintenance of viral latency by targeting IKKepsilon. Cell Res, 21: 793–806.PubMedCentralPubMedGoogle Scholar
  102. Liang D, Hu H, Li S, Dong J, Wang X, Wang Y, He L, He Z, Gao Y, Gao SJ, Lan K. 2014. Oncogenic herpesvirus KSHV Hijacks BMP-Smad1-Id signaling to promote tumorigenesis. PLoS Pathog, 10: e1004253.PubMedCentralPubMedGoogle Scholar
  103. Liang D, Lin X, Lan K. 2011a. Looking at Kaposi’s Sarcoma-Associated Herpesvirus-Host Interactions from a microRNA Viewpoint. Front Microbiol, 2: 271.PubMedCentralPubMedGoogle Scholar
  104. Lieberman PM. 2013. Keeping it quiet: chromatin control of gammaherpesvirus latency. Nat Rev Microbiol, 11: 863–875.PubMedGoogle Scholar
  105. Lim C, Lee D, Seo T, Choi C, Choe J. 2003. Latency-associated nuclear antigen of Kaposi’s sarcoma-associated herpesvirus functionally interacts with heterochromatin protein 1. J Biol Chem, 278: 7397–7405.PubMedGoogle Scholar
  106. Lin HR, Ganem D. 2011. Viral microRNA target allows insight into the role of translation in governing microRNA target accessibility. Proc Natl Acad Sci U S A, 108: 5148–5153.PubMedCentralPubMedGoogle Scholar
  107. Lin X, Liang D, He Z, Deng Q, Robertson ES, Lan K. 2011. miRK12-7-5p encoded by Kaposi’s sarcoma-associated herpesvirus stabilizes the latent state by targeting viral ORF50/RTA. PLoS One, 6: e16224.PubMedCentralPubMedGoogle Scholar
  108. Lin Z, Flemington EK. 2011. miRNAs in the pathogenesis of oncogenic human viruses. Cancer Lett, 305: 186–199.PubMedCentralPubMedGoogle Scholar
  109. Lu F, Stedman W, Yousef M, Renne R, Lieberman PM. 2010. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus latency by virus-encoded microRNAs that target Rta and the cellular Rbl2-DNMT pathway. J Virol, 84: 2697–2706.PubMedCentralPubMedGoogle Scholar
  110. Lu F, Zhou J, Wiedmer A, Madden K, Yuan Y, Lieberman PM. 2003. Chromatin remodeling of the Kaposi’s sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. J Virol, 77: 11425–11435.PubMedCentralPubMedGoogle Scholar
  111. Lu J, Jha HC, Verma SC, Sun Z, Banerjee S, Dzeng R, Robertson ES. 2014. Kaposi’s sarcoma-associated herpesvirus-encoded LANA contributes to viral latent replication by activating phosphorylation of survivin. J Virol, 88: 4204–4217.PubMedCentralPubMedGoogle Scholar
  112. Lu J, Verma SC, Cai Q, Saha A, Dzeng RK, Robertson ES. 2012. The RBP-Jkappa binding sites within the RTA promoter regulate KSHV latent infection and cell proliferation. PLoS Pathog, 8: e1002479.PubMedCentralPubMedGoogle Scholar
  113. Luna RE, Zhou F, Baghian A, Chouljenko V, Forghani B, Gao SJ, Kousoulas KG. 2004. Kaposi’s sarcoma-associated herpesvirus glycoprotein K8.1 is dispensable for virus entry. J Virol, 78: 6389–6398.PubMedCentralPubMedGoogle Scholar
  114. Majerciak V, Pripuzova N, McCoy JP, Gao SJ, Zheng ZM. 2007. Targeted disruption of Kaposi’s sarcoma-associated herpesvirus ORF57 in the viral genome is detrimental for the expression of ORF59, K8alpha, and K8.1 and the production of infectious virus. J Virol, 81: 1062–1071.PubMedCentralPubMedGoogle Scholar
  115. Malterer G, Dolken L, Haas J. 2011. The miRNA-targetome of KSHV and EBV in human B-cells. RNA Biol, 8: 30–34.PubMedGoogle Scholar
  116. Martinez FP, Tang Q. 2012. Leucine zipper domain is required for Kaposi sarcoma-associated herpesvirus (KSHV) K-bZIP protein to interact with histone deacetylase and is important for KSHV replication. J Biol Chem, 287: 15622–15634.PubMedCentralPubMedGoogle Scholar
  117. Mattsson K, Kiss C, Platt GM, Simpson GR, Kashuba E, Klein G, Schulz TF, Szekely L. 2002. Latent nuclear antigen of Kaposi’s sarcoma herpesvirus/human herpesvirus-8 induces and relocates RING3 to nuclear heterochromatin regions. J Gen Virol, 83: 179–188.PubMedGoogle Scholar
  118. Mayama S, Cuevas LE, Sheldon J, Omar OH, Smith DH, Okong P, Silvel B, Hart CA, Schulz TF. 1998. Prevalence and transmission of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents. Int J Cancer, 77: 817–820.PubMedGoogle Scholar
  119. Mercier A, Arias C, Madrid AS, Holdorf MM, Ganem D. 2014. Site-specific association with host and viral chromatin by Kaposi’s sarcoma-associated herpesvirus LANA and its reversal during lytic reactivation. J Virol, 88: 6762–6777.PubMedCentralPubMedGoogle Scholar
  120. Merkenschlager M, Odom DT. 2013. CTCF and cohesin: linking gene regulatory elements with their targets. Cell, 152: 1285–1297.PubMedGoogle Scholar
  121. Mesri EA, Cesarman E, Arvanitakis L, Rafii S, Moore MA, Posnett DN, Knowles DM, Asch AS. 1996. Human herpesvirus-8/Kaposi’s sarcoma-associated herpesvirus is a new transmissible virus that infects B cells. J Exp Med, 183: 2385–2390.PubMedGoogle Scholar
  122. Mesri EA, Cesarman E, Boshoff C. 2010. Kaposi’s sarcoma and its associated herpesvirus. Nat Rev Cancer, 10: 707–719.PubMedGoogle Scholar
  123. Miller G, El-Guindy A, Countryman J, Ye J, Gradoville L. 2007. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res, 97: 81–109.PubMedGoogle Scholar
  124. Miller G, Heston L, Grogan E, Gradoville L, Rigsby M, Sun R, Shedd D, Kushnaryov VM, Grossberg S, Chang Y. 1997. Selective switch between latency and lytic replication of Kaposi’s sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. J Virol, 71: 314–324.PubMedCentralPubMedGoogle Scholar
  125. Miller G, Rigsby MO, Heston L, Grogan E, Sun R, Metroka C, Levy JA, Gao SJ, Chang Y, Moore P. 1996. Antibodies to butyrate-inducible antigens of Kaposi’s sarcoma-associated herpesvirus in patients with HIV-1 infection. N Engl J Med, 334: 1292–1297.PubMedGoogle Scholar
  126. Moody R, Zhu Y, Huang Y, Cui X, Jones T, Bedolla R, Lei X, Bai Z, Gao SJ. 2013. KSHV microRNAs mediate cellular transformation and tumorigenesis by redundantly targeting cell growth and survival pathways. PLoS Pathog, 9: e1003857.PubMedCentralPubMedGoogle Scholar
  127. Moore PS, Chang Y. 2010. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat Rev Cancer, 10: 878–889.PubMedCentralPubMedGoogle Scholar
  128. Moses AV, Fish KN, Ruhl R, Smith PP, Strussenberg JG, Zhu L, Chandran B, Nelson JA. 1999. Long-term infection and transformation of dermal microvascular endothelial cells by human herpesvirus 8. J Virol, 73: 6892–6902.PubMedCentralPubMedGoogle Scholar
  129. Myoung J, Ganem D. 2011a. Infection of lymphoblastoid cell lines by Kaposi’s sarcoma-associated herpesvirus: critical role of cell-associated virus. J Virol, 85: 9767–9777.PubMedCentralPubMedGoogle Scholar
  130. Myoung J, Ganem D. 2011b. Generation of a doxycycline-inducible KSHV producer cell line of endothelial origin: Maintenance of tight latency with efficient reactivation upon induction. J Virol Methods, 174: 12–21.PubMedCentralPubMedGoogle Scholar
  131. Myoung J, Ganem D. 2011c. Infection of primary human tonsillar lymphoid cells by KSHV reveals frequent but abortive infection of T cells. Virology, 413: 1–11.PubMedCentralPubMedGoogle Scholar
  132. Nakamura H, Lu M, Gwack Y, Souvlis J, Zeichner SL, Jung JU. 2003. Global changes in Kaposi’s sarcoma-associated virus gene expression patterns following expression of a tetracycline-inducible Rta transactivator. J Virol, 77: 4205–4220.PubMedCentralPubMedGoogle Scholar
  133. National Institutes of Health (NIH). 2014. Available: http://commonfund.nih.gov/4Dnucleome/index.
  134. Nevels M, Nitzsche A, Paulus C. 2011. How to control an infectious bead string: nucleosome-based regulation and targeting of herpesvirus chromatin. Rev Med Virol, 21: 154–180.PubMedGoogle Scholar
  135. Niedermeier A, Talanin N, Chung EJ, Sells RE, Borris DL, Orenstein JM, Trepel JB, Blauvelt A. 2006. Histone deacetylase inhibitors induce apoptosis with minimal viral reactivation in cells infected with Kaposi’s sarcoma-associated herpesvirus. J Invest Dermatol, 126: 2516–2524.PubMedGoogle Scholar
  136. Orzechowska BU, Powers MF, Sprague J, Li H, Yen B, Searles RP, Axthelm MK, Wong SW. 2008. Rhesus macaque rhadinovirus-associated non-hodgkin lymphoma: Animal model for KSHV-associated malignancies. Blood, 112: 4227–4234.PubMedCentralPubMedGoogle Scholar
  137. Pantry SN, Medveczky PG. 2009. Epigenetic regulation of Kaposi’s sarcoma-associated herpesvirus replication. Semin Cancer Biol, 19: 153–157.PubMedCentralPubMedGoogle Scholar
  138. Panyutich EA, Said JW, Miles SA. 1998. Infection of primary dermal microvascular endothelial cells by Kaposi’s sarcoma-associated herpesvirus. AIDS, 12: 467–472.PubMedGoogle Scholar
  139. Paulus C, Nitzsche A, Nevels M. 2010. Chromatinisation of herpesvirus genomes. Rev Med Virol, 20: 34–50.PubMedGoogle Scholar
  140. Peng C, Chen J, Tang W, Liu C, Chen X. 2014. Kaposi’s sarcoma-associated herpesvirus ORF6 gene is essential in viral lytic replication. PLoS One, 9: e99542.PubMedCentralPubMedGoogle Scholar
  141. Picchio GR, Sabbe RE, Gulizia RJ, McGrath M, Herndier BG, Mosier DE. 1997. The KSHV/HHV8-infected BCBL-1 lymphoma line causes tumors in scid mice but fails to transmit virus to a human peripheral blood mononuclear cell graft. Virology, 238: 22–29.PubMedGoogle Scholar
  142. Plaisance-Bonstaff K, Choi HS, Beals T, Krueger BJ, Boss IW, Gay LA, Haecker I, Hu J, Renne R. 2014. KSHV miRNAs decrease expression of lytic genes in latently infected PEL and endothelial cells by targeting host transcription factors. Viruses, 6: 4005–4023.PubMedCentralPubMedGoogle Scholar
  143. Qin Z, Peruzzi F, Reiss K, Dai L. 2014. Role of host microRNAs in Kaposi’s sarcoma-associated herpesvirus pathogenesis. Viruses, 6: 4571–4580.PubMedCentralPubMedGoogle Scholar
  144. Quan L, Qiu T, Liang J, Li M, Zhang Y, Tao K. 2015. Identification of Target Genes Regulated by KSHV miRNAs in KSHV-Infected Lymphoma Cells. Pathol Oncol Res. (Epub ahead of print)Google Scholar
  145. Raab-Traub N. 2012. Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol, 2: 453–458.PubMedGoogle Scholar
  146. Ramalingam D, Kieffer-Kwon P, Ziegelbauer JM. 2012. Emerging themes from EBV and KSHV microRNA targets. Viruses, 4: 1687–1710.PubMedCentralPubMedGoogle Scholar
  147. Renne R, Blackbourn D, Whitby D, Levy J, Ganem D. 1998. Limited Transmission of Kaposi’s Sarcoma-Associated Herpesvirus in Cultured Cells. J Virol, 72: 5182–5188.PubMedCentralPubMedGoogle Scholar
  148. Renne R, Zhong W, Herndier B, McGrath M, Abbey N, Kedes D, Ganem D. 1996. Lytic growth of Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in culture. Nat Med, 2: 342–346.PubMedGoogle Scholar
  149. Rochford R, Mosier DE. 1995. Differential Epstein-Barr-Virus Gene-Expression in B-Cell Subsets Recovered from Lymphomas in Scid Mice after Transplantation of Human Peripheral-Blood Lymphocytes. J Virol, 69: 150–155.PubMedCentralPubMedGoogle Scholar
  150. Rossetto CC, Pari G. 2012. KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome. PLoS Pathog, 8: e1002680.PubMedCentralPubMedGoogle Scholar
  151. Rossetto CC, Pari GS. 2011. Kaposi’s sarcoma-associated herpesvirus noncoding polyadenylated nuclear RNA interacts with virus- and host cell-encoded proteins and suppresses expression of genes involved in immune modulation. J Virol, 85: 13290–13297.PubMedCentralPubMedGoogle Scholar
  152. Rossetto CC, Pari GS. 2014. PAN’s Labyrinth: Molecular biology of Kaposi’s sarcoma-associated herpesvirus (KSHV) PAN RNA, a multifunctional long noncoding RNA. Viruses, 6: 4212–4226.PubMedCentralPubMedGoogle Scholar
  153. Rossetto CC, Tarrant-Elorza M, Verma S, Purushothaman P, Pari GS. 2013. Regulation of viral and cellular gene expression by Kaposi’s sarcoma-associated herpesvirus polyadenylated nucle ar RNA. J Virol, 87: 5540–5553.PubMedCentralPubMedGoogle Scholar
  154. Sakakibara S, Ueda K, Nishimura K, Do E, Ohsaki E, Okuno T, Yamanishi K. 2004. Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi’s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen. J Virol, 78: 7299–7310.PubMedCentralPubMedGoogle Scholar
  155. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R. 2007. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog, 3: e65.PubMedCentralPubMedGoogle Scholar
  156. Sarosiek KA, Cavallin LE, Bhatt S, Toomey NL, Natkunam Y, Blasini W, Gentles AJ, Ramos JC, Mesri EA, Lossos IS. 2010. Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proc Natl Acad Sci U S A, 107: 13069–13074.PubMedCentralPubMedGoogle Scholar
  157. Sathish N, Yuan Y. 2010. Functional characterization of Kaposi’s sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis. Virology, 407: 306–318.PubMedGoogle Scholar
  158. Sexton BS, Avey D, Druliner BR, Fincher JA, Vera DL, Grau DJ, Borowsky ML, Gupta S, Girimurugan SB, Chicken E, Zhang J, Noble WS, Zhu F, Kingston RE, Dennis JH. 2014a. The spring-loaded genome: nucleosome redistributions are widespread, transient, and DNA-directed. Genome Res, 24: 251–259.PubMedCentralPubMedGoogle Scholar
  159. Sexton BS, Druliner BR, Avey D, Zhu F, Dennis JH. 2014b. Changes in nucleosome occupancy occur in a chromosome specific manner. Genom Data, 2: 114–116.PubMedGoogle Scholar
  160. Sexton BS, Druliner BR, Vera DL, Avey D, Zhu F, Dennis JH. 2015. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response. Science Advances. (Submitted for publication)Google Scholar
  161. Shin HJ, DeCotiis J, Giron M, Palmeri D, Lukac DM. 2014. Histone deacetylase classes I and II regulate Kaposi’s sarcoma-associated herpesvirus reactivation. J Virol, 88: 1281–1292.PubMedCentralPubMedGoogle Scholar
  162. Sin SH, Roy D, Wang L, Staudt MR, Fakhari FD, Patel DD, Henry D, Harrington WJ, Jr., Damania BA, Dittmer DP. 2007. Rapamycin is efficacious against primary effusion lymphoma (PEL) cell lines in vivo by inhibiting autocrine signaling. Blood, 109: 2165–2173.PubMedCentralPubMedGoogle Scholar
  163. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R. 2007. Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol, 81: 12836–12845.PubMedCentralPubMedGoogle Scholar
  164. Soulier J, Grollet L, Oksenhendler E, Cacoub P, Cazals-Hatem D, Babinet P, d’Agay MF, Clauvel JP, Raphael M, Degos L, et al. 1995. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman’s disease. Blood, 86: 1276–1280.PubMedGoogle Scholar
  165. Staudt MR, Kanan Y, Jeong JH, Papin JF, Hines-Boykin R, Dittmer DP. 2004. The tumor microenvironment controls primary effusion lymphoma growth in vivo. Cancer Res, 64: 4790–4799.PubMedGoogle Scholar
  166. Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. 2008. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J, 27: 654–666.PubMedCentralPubMedGoogle Scholar
  167. Strang BL, Stow ND. 2005. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol, 79: 12487–12494.PubMedCentralPubMedGoogle Scholar
  168. Sturzl M, Gaus D, Dirks WG, Ganem D, Jochmann R. 2013. Kaposi’s sarcoma-derived cell line SLK is not of endothelial origin, but is a contaminant from a known renal carcinoma cell line. Int J Cancer, 132: 1954–1958.PubMedGoogle Scholar
  169. Sunil-Chandra NP, Arno J, Fazakerley J, Nash AA. 1994. Lymphoproliferative disease in mice infected with murine gammaherpesvirus 68. Am J Pathol, 145: 818–826.PubMedCentralPubMedGoogle Scholar
  170. Sun R, Lin S-F, Gradoville L, Yuan Y, Zhu F, Miller G. 1998. A viral gene that activates lytic cycle expression of Kaposi’s sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A, 95: 10866–10871.PubMedCentralPubMedGoogle Scholar
  171. Szekely L, Kiss C, Mattsson K, Kashuba E, Pokrovskaja K, Juhasz A, Holmvall P, Klein G. 1999. Human herpesvirus-8-encoded LNA-1 accumulates in heterochromatin-associated nuclear bodies. J Gen Virol, 80: 2889–2900.PubMedGoogle Scholar
  172. Toth Z, Brulois K, Jung JU. 2013a. The chromatin landscape of Kaposi’s sarcoma-associated herpesvirus. Viruses, 5: 1346–1373.PubMedCentralPubMedGoogle Scholar
  173. Toth Z, Brulois K, Lee HR, Izumiya Y, Tepper C, Kung HJ, Jung JU. 2013b. Biphasic euchromatin-to-heterochromatin transition on the KSHV genome following de novo infection. PLoS Pathog, 9: e1003813.PubMedCentralPubMedGoogle Scholar
  174. Toth Z, Brulois KF, Wong LY, Lee HR, Chung B, Jung JU. 2012. Negative elongation factor-mediated suppression of RNA polymerase II elongation of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. J Virol, 86: 9696–9707.PubMedCentralPubMedGoogle Scholar
  175. Toth Z, Maglinte DT, Lee SH, Lee HR, Wong LY, Brulois KF, Lee S, Buckley JD, Laird PW, Marquez VE, Jung JU. 2010. Epigenetic analysis of KSHV latent and lytic genomes. PLoS Pathog, 6: e1001013.PubMedCentralPubMedGoogle Scholar
  176. Towata T, Komizu Y, Suzu S, Matsumoto Y, Ueoka R, Okada S. 2010. Hybrid liposomes inhibit the growth of primary effusion lymphoma in vitro and in vivo. Leuk Res, 34: 906–911.PubMedGoogle Scholar
  177. Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol, 8: e1000414.PubMedCentralPubMedGoogle Scholar
  178. Uldrick TS, Whitby D. 2011. Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Lett, 305: 150–162.PubMedCentralPubMedGoogle Scholar
  179. Ule J, Jensen K, Mele A, Darnell RB. 2005. CLIP: a method for identifying protein-RNA interaction sites in living cells. Methods, 37: 376–386.PubMedGoogle Scholar
  180. Ule J, Jensen KB, Ruggiu M, Mele A, Ule A, Darnell RB. 2003. CLIP identifies Nova-regulated RNA networks in the brain. Science, 302: 1212–1215.PubMedGoogle Scholar
  181. Verma SC, Robertson ES. 2003. Molecular biology and pathogenesis of Kaposi sarcoma-associated herpesvirus. FEMS Microbiol Lett, 222: 155–163.PubMedGoogle Scholar
  182. Vieira J, Huang ML, Koelle DM, Corey L. 1997. Transmissible Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) in saliva of men with a history of Kaposi’s sarcoma. J Virol, 71: 7083–7087.PubMedCentralPubMedGoogle Scholar
  183. Vieira J, O’Hearn PM. 2004. Use of the red fluorescent protein as a marker of Kaposi’s sarcoma-associated herpesvirus lytic gene expression. Virology, 325: 225–240.PubMedGoogle Scholar
  184. Viejo-Borbolla A, Kati E, Sheldon JA, Nathan K, Mattsson K, Szekely L, Schulz TF. 2003. A Domain in the C-terminal region of latency-associated nuclear antigen 1 of Kaposi’s sarcoma-associated Herpesvirus affects transcriptional activation and binding to nuclear heterochromatin. J Virol, 77: 7093–7100.PubMedCentralPubMedGoogle Scholar
  185. Walker LR, Hussein HA, Akula SM. 2014. Disintegrin-like domain of glycoprotein B regulates Kaposi’s sarcoma-associated herpesvirus infection of cells. J Gen Virol, 95: 1770–1782.PubMedGoogle Scholar
  186. Wang HW, Trotter MW, Lagos D, Bourboulia D, Henderson S, Makinen T, Elliman S, Flanagan AM, Alitalo K, Boshoff C. 2004. Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet, 36: 687–693.PubMedGoogle Scholar
  187. Wang LX, Kang G, Kumar P, Lu W, Li Y, Zhou Y, Li Q, Wood C. 2014. Humanized-blt mouse model of Kaposi’s sarcoma-associated herpesvirus infection. Proc Natl Acad Sci U S A., 111: 3146–3151.PubMedCentralPubMedGoogle Scholar
  188. Wang SE, Wu FY, Yu Y, Hayward GS. 2003. CCAAT/enhancer-binding protein-alpha is induced during the early stages of Kaposi’s sarcoma-associated herpesvirus (KSHV) lytic cycle reactivation and together with the KSHV replication and transcription activator (RTA) cooperatively stimulates the viral RTA, MTA, and PAN promoters. J Virol, 77: 9590–9612.PubMedCentralPubMedGoogle Scholar
  189. Weninger W, Partanen TA, Breiteneder-Geleff S, Mayer C, Kowalski H, Mildner M, Pammer J, Sturzl M, Kerjaschki D, Alitalo K, Tschachler E. 1999. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi’s sarcoma tumor cells. Lab Invest, 79: 243–251.PubMedGoogle Scholar
  190. Woodcock CL, Ghosh RP. 2010. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol, 2: a000596.PubMedCentralPubMedGoogle Scholar
  191. Xu Y, Rodriguez-Huete A, Pari GS. 2006. Evaluation of the lytic origins of replication of Kaposi’s sarcoma-associated virus/human herpesvirus 8 in the context of the viral genome. J Virol, 80: 9905–9909.PubMedCentralPubMedGoogle Scholar
  192. Yakushko Y, Hackmann C, Gunther T, Ruckert J, Henke M, Koste L, Alkharsah K, Bohne J, Grundhoff A, Schulz TF, Henke-Gendo C. 2011. Kaposi’s sarcoma-associated herpesvirus bacterial artificial chromosome contains a duplication of a long unique-region fragment within the terminal repeat region. J Virol, 85: 4612–4617.PubMedCentralPubMedGoogle Scholar
  193. Yang Y, Boss IW, McIntyre LM, Renne R. 2014. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells. BMC Genomics, 15: 668.PubMedCentralPubMedGoogle Scholar
  194. Ye FC, Zhou FC, Yoo SM, Xie JP, Browning PJ, Gao SJ. 2004. Disruption of Kaposi’s sarcoma-associated herpesvirus latent nuclear antigen leads to abortive episome persistence. J Virol, 78: 11121–11129.PubMedCentralPubMedGoogle Scholar
  195. Ye J, Gradoville L, Daigle D, Miller G. 2007. De novo protein synthesis is required for lytic cycle reactivation of Epstein-Barr virus, but not Kaposi’s sarcoma-associated herpesvirus, in response to histone deacetylase inhibitors and protein kinase C agonists. J Virol, 81: 9279–9291.PubMedCentralPubMedGoogle Scholar
  196. Yoo SM, Ahn AK, Seo T, Hong HB, Chung MA, Jung SD, Cho H, Lee MS. 2008. Centrifugal enhancement of Kaposi’s sarcoma-associated virus infection of human endothelial cells in vitro. J Virol Methods, 154: 160–166.PubMedGoogle Scholar
  197. Young LS, Murray PG. 2003. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene, 22: 5108–5121.PubMedGoogle Scholar
  198. Yu X, Shahir AM, Sha J, Feng Z, Eapen B, Nithianantham S, Das B, Karn J, Weinberg A, Bissada NF, Ye F. 2014. Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi’s sarcoma-associated herpesvirus replication. J Virol, 88: 4466–4479.PubMedCentralPubMedGoogle Scholar
  199. Zhou FC, Zhang YJ, Deng JH, Wang XP, Pan HY, Hettler E, Gao SJ. 2002. Efficient infection by a recombinant Kaposi’s sarcoma-associated herpesvirus cloned in a bacterial artificial chromosome: Application for genetic analysis. J Virol, 76: 6185–6196.PubMedCentralPubMedGoogle Scholar
  200. Zhu FX, Li X, Zhou F, Gao SJ, Yuan Y. 2006. Functional characterization of Kaposi’s sarcoma-associated herpesvirus ORF45 by bacterial artificial chromosome-based mutagenesis. J Virol, 80: 12187–12196.PubMedCentralPubMedGoogle Scholar
  201. Zhu Y, Haecker I, Yang Y, Gao SJ, Renne R. 2013. gamma-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Curr Opin Virol, 3: 266–275.PubMedGoogle Scholar
  202. Ziegelbauer JM. 2011. Functions of Kaposi’s sarcoma-associated herpesvirus microRNAs. Biochim Biophys Acta, 1809: 623–630.PubMedCentralPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biological ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations