Virologica Sinica

, Volume 30, Issue 2, pp 101–106 | Cite as

Recent advances in the study of HPV-associated carcinogenesis

Review

Abstract

Human papillomaviruses (HPVs) cause virtually all cervical cancers, the second leading cause of death by cancer among women, as well as other anogenital cancers and a subset of head and neck cancers. Approximately half of women, who develop cervical cancer die from it. Despite the optimism that has accompanied the introduction of prophylactic vaccines to prevent some HPV infections, the relatively modest uptake of the vaccine, especially in the developing world, and the very high fraction of men and women who are already infected, means that HPV-associated disease will remain as a significant public health problem for decades. In this review, we summarize some recent findings on HPV-associated carcinogenesis, such as miRNAs in HPV-associated cancers, implication of stem cells in the biology and therapy of HPV-positive cancers, HPV vaccines, targeted therapy of cervical cancer, and drug treatment for HPV-induced intraepithelial neoplasias.

Keywords

human papillomavirus (HPV) carcinogenesis vaccine miRNA cancer stem cell (CSC) cervical intraepithelial neoplasias (CIN) targeted therapy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Au Yeung CL, Tsang TY, Yau PL, Kwok TT. 2011. Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene, 30: 2401–2410.CrossRefPubMedGoogle Scholar
  2. Bartel DP. 2004. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116: 281–297.CrossRefPubMedGoogle Scholar
  3. Boccardo E, Noya F, Broker TR, Chow LT, Villa LL. 2004. HPV-18 confers resistance to TNF-alpha in organotypic cultures of human keratinocytes. Virology, 328: 233–243.CrossRefPubMedGoogle Scholar
  4. Bravo IG, Félez-Sánchez M. 2015. Papillomaviruses: Viral evolution, cancer and evolutionary medicine. Evol Med Public Health, 2015: 32–51.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Brehm A, Nielsen SJ, Miska EA, McCance DJ, Reid JL, Bannister AJ, Kouzarides T. 1999. The E7 oncoprotein associates with Mi2 and histone deacetylase activity to promote cell growth. EMBO J, 18: 2449–2458.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Bueno MJ, Gómez de Cedrón M, Laresgoiti U, Fernández-Piqueras J, Zubiaga AM, Malumbres M. 2010. Multiple E2F-induced microRNAs prevent replicative stress in response to mitogenic signaling. Mol Cell Biol, 30: 2983–2995.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Collart MA, Panasenko OO. 2012. The Ccr4—not complex. Gene, 492: 42–53.CrossRefPubMedGoogle Scholar
  8. Daayana S, Elkord E, Winters U, Pawlita M, Roden R, Stern PL, Kitchener HC. 2010. Phase II trial of imiquimod and HPV therapeutic vaccination in patients with vulval intraepithelial neoplasia. Br J Cancer, 102:1129–1136.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Del Priore G, Gudipudi DK, Montemarano N, Restivo AM, Malanowska-Stega J, Arslan AA. 2010. Oral diindolylmethane (DIM): pilot evaluation of a nonsurgical treatment for cervical dysplasia. Gynecol Oncol, 116:464–467.CrossRefPubMedGoogle Scholar
  10. Dobson SR, McNeil S, Dionne M, Dawar M, Ogilvie G, Krajden M, Sauvageau C, Scheifele DW, Kollmann TR, Halperin SA, Langley JM, Bettinger JA, Singer J, Money D, Miller D, Naus M, Marra F, Young E. 2013. Immunogenicity of 2 doses of HPV vaccine in younger adolescents vs 3 doses in young women: a randomized clinical trial. JAMA, 309: 1793–1802.CrossRefPubMedGoogle Scholar
  11. Duensing S, Lee LY, Duensing A, Basile J, Piboonniyom S, Gonzalez S, Crum CP, Munger K. 2000. The human papillomavirus type 16 E6 and E7 oncoproteins cooperate to induce mitotic defects and genomic instability by uncoupling centrosome duplication from the cell division cycle. Proc Natl Acad Sci U S A, 97: 10002–10007.CrossRefPubMedCentralPubMedGoogle Scholar
  12. Garnett TO, Filippova M, Duerksen-Hughes PJ. 2006. Accelerated degradation of FADD and procaspase 8 in cells expressing human papilloma virus 16 E6 impairs TRAIL-mediated apoptosis. Cell Death Differ, 13: 1915–1926.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Georgakilas AG, Tsantoulis P, Kotsinas A, Michalopoulos I, Townsend P, Gorgoulis VG. 2014. Are common fragile sites merely structural domains or highly organized “functional” units susceptible to oncogenic stress? Cell Mol Life Sci, 71: 4519–4544.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Grimm C, Polterauer S, Natter C, Rahhal J, Hefler L, Tempfer CB, Heinze G, Stary G, Reinthaller A, Speiser P. 2012. Treatment of cervical intraepithelial neoplasia with topical imiquimod: a randomized controlled trial. Obstet Gynecol, 120:152–159.CrossRefPubMedGoogle Scholar
  15. Gu W, Yeo E, McMillan N, Yu C. 2011. Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther, 18: 897–905.CrossRefPubMedGoogle Scholar
  16. Hibbitts S. 2010. TA-CIN, a vaccine incorporating a recombinant HPV fusion protein (HPV16 L2E6E7) for the potential treatment of HPV16-associated genital diseases. Curr Opin Mol Ther, 12: 598–606.PubMedGoogle Scholar
  17. Howie HL, Katzenellenbogen RA, Galloway DA. 2009. Papillomavirus E6 proteins. Virology, 384: 324–334.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Huh KW, DeMasi J, Ogawa H, Nakatani Y, Howley PM, Münger K. 2005. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc Natl Acad Sci U S A, 102: 11492–11497.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Ji J, Wei X, Wang Y. 2014. Embryonic stem cell markers Sox-2 and OCT4 expression and their correlation with WNT signal pathway in cervical squamous cell carcinoma. Int J Clin Exp Pathol, 7: 2470–2476.PubMedCentralPubMedGoogle Scholar
  20. Klingelhutz AJ, Foster SA, McDougall JK. 1996. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature, 380: 79–82.CrossRefPubMedGoogle Scholar
  21. Lajer CB, Garnæs E, Friis-Hansen L, Norrild B, Therkildsen MH, Glud M, Rossing M, Lajer H, Svane D, Skotte L, Specht L, Buchwald C, Nielsen FC. 2012. The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer, 106: 1526–1534.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Lewis BP, Burge CB, Bartel DP. 2005. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120: 15–20.CrossRefPubMedGoogle Scholar
  23. Li B, Hu Y, Ye F, Li Y, Lv W, Xie X. 2010. Reduced miR-34a expression in normal cervical tissues and cervical lesions with high-risk human papillomavirus infection. Int J Gynecol Cancer, 20: 597–604.CrossRefPubMedGoogle Scholar
  24. Liu HC, Chen GG, Vlantis AC, Tse GM, Chan AT, van Hasselt CA. 2008. Inhibition of apoptosis in human laryngeal cancer cells by E6 and E7 oncoproteins of human papillomavirus 16. J Cell Biochem, 103:1125–1143.CrossRefPubMedGoogle Scholar
  25. Longworth MS, Laimins LA. 2004. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31. J Virol, 78:3533–3541.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Lopez J, Poitevin A, Mendoza-Martinez V, Perez-Plasencia C, Garcia-Carranca A. 2012. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance. BMC Cancer, 12:48.CrossRefPubMedCentralPubMedGoogle Scholar
  27. McLaughlin-Drubin ME, Munger K. 2009. Oncogenic activities of human papillomaviruses. Virus Res, 143: 195–208.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Michael S, Lambert PF, Strati K. 2013. The HPV16 oncogenes cause aberrant stem cell mobilization. Virology, 443: 218–225.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Mirghani H, Amen F, Moreau F, Lacau St, Guily J. 2015. Do highrisk human papillomaviruses cause oral cavity squamous cell carcinoma?. Oral Oncol, 51: 229–236.CrossRefPubMedGoogle Scholar
  30. Monk BJ, Mas Lopez L, Zarba JJ, Oaknin A, Tarpin C, Termrungruanglert W, Alber JA, Ding J, Stutts MW, Pandite LN. 2010. Phase II, open-label study of pazopanib or lapatinib monotherapy compared with pazopanib plus lapatinib combination therapy in patients with advanced and recurrent cervical cancer. J Clin Oncol, 28: 3562–3569.CrossRefPubMedGoogle Scholar
  31. Moody CA, Laimins LA. 2010. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 10:550–560.CrossRefPubMedGoogle Scholar
  32. Nguyen CL, Münger K. 2008. Direct association of the HPV16 E7 oncoprotein with cyclin A/CDK2 and cyclin E/CDK2 complexes. Virology, 380: 21–25.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Park JS, Kim EJ, Kwon HJ, Hwang ES, Namkoong SE, Um SJ. 2000. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J Biol Chem, 275: 6764–6769.CrossRefPubMedGoogle Scholar
  34. Pim D, Bergant M, Boon SS, Ganti K, Kranjec C, Massimi P, Subbaiah VK, Thomas M, Tomaić V, Banks L. 2012. Human papillomaviruses and the specificity of PDZ domain targeting. FEBS J, 279: 3530–3537.CrossRefPubMedGoogle Scholar
  35. Romanowski B, Schwarz TF, Ferguson LM, Ferguson M, Peters K, Dionne M, Schulze K, Ramjattan B, Hillemanns P, Behre U, Suryakiran P, Thomas F, Struyf F. 2014. Immune response to the HPV-16/18 AS04-adjuvanted vaccine administered as a 2-dose or 3-dose schedule up to 4 years after vaccination: results from a randomized study. Hum Vaccin Immunother, 10: 1155–1165.CrossRefPubMedGoogle Scholar
  36. Ronco LV, Karpova AY, Vidal M, Howley PM. 1998. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev, 12: 2061–2072.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM. 1993. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell, 75: 495–505.CrossRefPubMedGoogle Scholar
  38. Schiller JT, Lowy DR. 2012. Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol, 10: 681–692.CrossRefPubMedGoogle Scholar
  39. Serrano B, Alemany L, Tous S, Bruni L, Clifford GM, Weiss T, Bosch FX, de Sanjosé S. 2012. Potential impact of a nine-valent vaccine in human papillomavirus related cervical disease. Infect Agent Cancer, 7:38.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Tang AL, Owen JH, Hauff SJ, Park JJ, Papagerakis S, Bradford CR, Carey TE, Prince ME. 2013. Head and neck cancer stem cells: the effect of HPV—an in vitro and mouse study. Otolaryngol Head Neck Surg, 149: 252–260.CrossRefPubMedCentralPubMedGoogle Scholar
  41. Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, Landrum LM, Oaknin A, Reid TJ, Leitao MM, Michael HE, Monk BJ. 2014. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med, 370: 734–743.CrossRefPubMedCentralPubMedGoogle Scholar
  42. The Cancer Genome Atlas Network (TCGA). 2015. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517: 576–582.CrossRefGoogle Scholar
  43. Thomas MC, Chiang CM. 2005. E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. Mol Cell, 17: 251–264.CrossRefPubMedGoogle Scholar
  44. Tran NP, Hung CF, Roden R, Wu TC. 2014. Control of HPV infection and related cancer through vaccination. Recent Results Cancer Res, 193: 149–171.CrossRefPubMedGoogle Scholar
  45. Underbrink MP, Howie HL, Bedard KM, Koop JI, Galloway DA. 2008. E6 proteins from multiple human betapapillomavirus types degrade Bak and protect keratinocytes from apoptosis after UVB irradiation. J Virol, 82: 10408–10417.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Van Pachterbeke C, Bucella D, Rozenberg S, Manigart Y, Gilles C, Larsimont D, Vanden Houte K, Reynders M, Snoeck R, Bossens M. 2009. Topical treatment of CIN 2+ by cidofovir: results of a phase II, double-blind, prospective, placebo-controlled study. Gynecol Oncol, 115: 69–74.CrossRefPubMedGoogle Scholar
  47. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N. 1999. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol, 189: 12–19.CrossRefPubMedGoogle Scholar
  48. Wang JW, Jagu S, Wang C, Kitchener HC, Daayana S, Stern PL, Pang S, Day PM, Huh WK, Roden RB. 2014a. Measurement of neutralizing serum antibodies of patients vaccinated with human papillomavirus L1 or L2-based immunogens using furin-cleaved HPV Pseudovirions. PLoS One, 9: e101576.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Wang X, Wang HK, Li Y, Hafner M, Banerjee NS, Tang S, Briskin D, Meyers C, Chow LT, Xie X, Tuschl T, Zheng ZM. 2014b. microRNAs are biomarkers of oncogenic human papillomavirus infections. Proc Natl Acad Sci U S A, 111: 4262–4267.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Wang X, Wang HK, McCoy JP, Banerjee NS, Rader JS, Broker TR, Meyers C, Chow LT, Zheng ZM. 2009. Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA, 15: 637–647.CrossRefPubMedCentralPubMedGoogle Scholar
  51. White EA, Kramer RE, Tan MJ, Hayes SD, Harper JW, Howley PM. 2012a. Comprehensive analysis of host cellular interactions with human papillomavirus E6 proteins identifies new E6 binding partners and reflects viral diversity. J Virol, 86: 13174–13186.CrossRefPubMedCentralPubMedGoogle Scholar
  52. White EA, Sowa ME, Tan MJ, Jeudy S, Hayes SD, Santha S, Münger K, Harper JW, Howley PM. 2012b. Systematic identification of interactions between host cell proteins and E7 oncoproteins from diverse human papillomaviruses. Proc Natl Acad Sci U S A, 109: 260–267.CrossRefGoogle Scholar
  53. Wright JD, Viviano D, Powell MA, Gibb RK, Mutch DG, Grigsby PW, Rader JS. 2006. Bevacizumab combination therapy in heavily pretreated, recurrent cervical cancer. Gynecol Oncol, 103: 489–93.CrossRefPubMedGoogle Scholar
  54. Xu M, Katzenellenbogen RA, Grandori C, Galloway DA. 2013. An unbiased in vivo screen reveals multiple transcription factors that control HPV E6-regulated hTERT in keratinocytes. Virology, 446: 17–24.CrossRefPubMedCentralPubMedGoogle Scholar
  55. Ye F, Zhou C, Cheng Q, Shen J, Chen H. 2008. Stem-cell-abundant proteins Nanog, Nucle ostemin and Musashi1 are highly expressed in malignant cervical epithelial cells. BMC Cancer, 8: 108–112.CrossRefPubMedCentralPubMedGoogle Scholar
  56. Zheng ZM, Wang X. 2011. Regulation of cellular miRNA expression by human papillomaviruses. Biochim Biophys Acta, 1809: 668–677.CrossRefPubMedCentralPubMedGoogle Scholar
  57. zur Hausen H. 2009. Papillomaviruses in the causation of human cancers — a brief historical account. Virology, 384: 260–265.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Hematology and Oncology, Comprehensive Cancer CenterUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations