Abstract
Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes eight accessory proteins, the functions of which are not yet fully understood. SARS-CoV protein 6 (P6) is one of the previously studied accessory proteins that have been documented to enhance viral replication and suppress host interferon (IFN) signaling pathways. Through yeast two-hybrid screening, we identified eight potential cellular P6-interacting proteins from a human spleen cDNA library. For further investigation, we targeted the IFN signaling pathway-mediating protein, N-Myc (and STAT) interactor (Nmi). Its interaction with P6 was confirmed within cells. The results showed that P6 can promote the ubiquitin-dependent proteosomal degradation of Nmi. This study revealed a new mechanism of SARS-CoV P6 in limiting the IFN signaling to promote SARS-CoV survival in host cells.
References
Bao J, Zervos AS. 1996. Isolation and characterization of nmi, a novel partner of myc proteins. Oncogene, 12: 2171–2176.
Chen CY, Ping YH, Lee HC, Chen KH, Lee YM, Chan YJ, Lien TC, Jap TS, Lin CH, Kao LS, Chen YM. 2007. Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis. J Infect Dis, 196: 405–415.
Chen S, Yu X, Lei Q, Ma L, Guo D. 2013. The sumoylation of zinc-fingers and homeoboxes 1 (zhx1) by ubc9 regulates its stability and transcriptional repression activity. J Cell Biochem, 114: 2323–2333.
Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. 2007. Severe acute respiratory syndrome coronavirus orf6 antagonizes stat1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/golgi membrane. J Virol, 81: 9812–9824.
Garcia-Sastre A, Biron CA. 2006. Type 1 interferons and the virus-host relationship: A lesson in detente. Science, 312: 879–882.
Geng H, Liu YM, Chan WS, Lo AW, Au DM, Waye MM, Ho YY. 2005. The putative protein 6 of the severe acute respiratory syndrome-associated coronavirus: Expression and functional characterization. FEBS Lett, 579: 6763–6768.
Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses related to the sars coronavirus from animals in southern china. Science, 302: 276–278.
Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelz-waan GF, van Amerongen G, van Riel D, de Jong T, Itamura S, Chan KH, Tashiro M, Osterhaus AD. 2004. Pegylated interferon-alpha protects type 1 pneumocytes against sars coronavirus infection in macaques. Nat Med, 10: 290–293.
Hensley LE, Fritz LE, Jahrling PB, Karp CL, Huggins JW, Geisbert TW. 2004. Interferon-beta 1a and sars coronavirus replication. Emerg Infect Dis, 10: 317–319.
Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (orf) 3b, orf 6, and nucleocapsid proteins function as interferon antagonists. J Virol, 81: 548–557.
Kumar P, Gunalan V, Liu B, Chow VT, Druce J, Birch C, Catton M, Fielding BC, Tan YJ, Lal SK. 2007. The nonstructural protein 8 (nsp8) of the sars coronavirus interacts with its orf6 accessory protein. Virology, 366: 293–303.
Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CK, Chen J, Duan S, Deubel V, Sun B. 2006. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A, 103: 12540–12545.
Lundberg L, Pinkham C, Baer A, Amaya M, Narayanan A, Wagstaff KM, Jans DA, Kehn-Hall K. 2013. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce venezuelan equine encephalitis virus replication. Antiviral Res, 100: 662–672.
McBride R, Fielding BC. 2012. The role of severe acute respiratory syndrome (sars)-coronavirus accessory proteins in virus pathogenesis. Viruses, 4: 2902–2923.
Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. 2013. Family cluster of middle east respiratory syndrome coronavirus infections. N Engl J Med, 368: 2487–2494.
Netland J, Ferraro D, Pewe L, Olivares H, Gallagher T, Perlman S. 2007. Enhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the n-terminal hydrophobic region but not c-terminal sorting motifs. J Virol, 81: 11520–11525.
Randow F, Lehner PJ. 2009. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol, 11: 527–534.
Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF. 2006. Ebola virus vp24 binds karyopherin alpha1 and blocks stat1 nuclear accumulation. J Virol, 80: 5156–5167.
Schaecher SR, Mackenzie JM, Pekosz A. 2007. The orf7b protein of severe acute respiratory syndrome coronavirus (sars-cov) is expressed in virus-infected cells and incorporated into sars-cov particles. J Virol, 81: 718–731.
Spiegel M, Pichlmair A, Martinez-Sobrido L, Cros J, Garcia-Sastre A, Haller O, Weber F. 2005. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol, 79: 2079–2086.
Stroher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, Jones SM, Feldmann H. 2004. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha. J Infect Dis, 189: 1164–1167.
Wang J, Yang B, Hu Y, Zheng Y, Zhou H, Wang Y, Ma Y, Mao K, Yang L, Lin G, Ji Y, Wu X, Sun B. 2013. Negative regulation of nmi on virus-triggered type i ifn production by targeting irf7. J Immunol, 191: 3393–3399.
Wong GW, Li AM, Ng PC, Fok TF. 2003. Severe acute respiratory syndrome in children. Pediatr Pulmonol, 36: 261–266.
Ye Z, Wong CK, Li P, Xie Y. 2008. A sars-cov protein, orf-6, induces caspase-3 mediated, er stress and jnk-dependent apoptosis. Biochim Biophys Acta, 1780: 1383–1387.
Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, Denison MR, Davis N, Baric RS. 2005. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol, 79: 14909–14922.
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in saudi arabia. N Engl J Med, 367: 1814–1820.
Zhao J, Falcon A, Zhou H, Netland J, Enjuanes L, Perez Brena P, Perlman S. 2009. Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication. J Virol, 83: 2368–2373.
Zhou H, Ferraro D, Zhao J, Hussain S, Shao J, Trujillo J, Netland J, Gallagher T, Perlman S. 2010. The n-terminal region of severe acute respiratory syndrome coronavirus protein 6 induces membrane rearrangement and enhances virus replication. J Virol, 84: 3542–3551.
Zhu M, John S, Berg M, Leonard WJ. 1999. Functional association of nmi with stat5 and stat1 in il-2- and ifngamma-mediated signaling. Cell, 96: 121–130.
Ziebuhr J. 2004. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol, 7: 412–419.
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors contributed equally to this work.
ORCID: 0000-0001-8816-3952
Rights and permissions
About this article
Cite this article
Cheng, W., Chen, S., Li, R. et al. Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc (and STAT) interactor. Virol. Sin. 30, 153–161 (2015). https://doi.org/10.1007/s12250-015-3581-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12250-015-3581-8
Keywords
- severe acute respiratory syndrome coronavirus (SARS-CoV)
- P6
- N-Myc (and STAT) interactor (Nmi)
- interferon (IFN) signaling pathway
- ubiquitination
- proteosomal degradation