Advertisement

Virologica Sinica

, Volume 30, Issue 2, pp 153–161 | Cite as

Severe acute respiratory syndrome coronavirus protein 6 mediates ubiquitin-dependent proteosomal degradation of N-Myc (and STAT) interactor

  • Weijia Cheng
  • Shiyou Chen
  • Ruiling Li
  • Yu Chen
  • Min Wang
  • Deyin Guo
Research Article

Abstract

Severe acute respiratory syndrome coronavirus (SARS-CoV) encodes eight accessory proteins, the functions of which are not yet fully understood. SARS-CoV protein 6 (P6) is one of the previously studied accessory proteins that have been documented to enhance viral replication and suppress host interferon (IFN) signaling pathways. Through yeast two-hybrid screening, we identified eight potential cellular P6-interacting proteins from a human spleen cDNA library. For further investigation, we targeted the IFN signaling pathway-mediating protein, N-Myc (and STAT) interactor (Nmi). Its interaction with P6 was confirmed within cells. The results showed that P6 can promote the ubiquitin-dependent proteosomal degradation of Nmi. This study revealed a new mechanism of SARS-CoV P6 in limiting the IFN signaling to promote SARS-CoV survival in host cells.

Keywords

severe acute respiratory syndrome coronavirus (SARS-CoV) P6 N-Myc (and STAT) interactor (Nmi) interferon (IFN) signaling pathway ubiquitination proteosomal degradation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bao J, Zervos AS. 1996. Isolation and characterization of nmi, a novel partner of myc proteins. Oncogene, 12: 2171–2176.PubMedGoogle Scholar
  2. Chen CY, Ping YH, Lee HC, Chen KH, Lee YM, Chan YJ, Lien TC, Jap TS, Lin CH, Kao LS, Chen YM. 2007. Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis. J Infect Dis, 196: 405–415.CrossRefPubMedGoogle Scholar
  3. Chen S, Yu X, Lei Q, Ma L, Guo D. 2013. The sumoylation of zinc-fingers and homeoboxes 1 (zhx1) by ubc9 regulates its stability and transcriptional repression activity. J Cell Biochem, 114: 2323–2333.CrossRefPubMedGoogle Scholar
  4. Frieman M, Yount B, Heise M, Kopecky-Bromberg SA, Palese P, Baric RS. 2007. Severe acute respiratory syndrome coronavirus orf6 antagonizes stat1 function by sequestering nuclear import factors on the rough endoplasmic reticulum/golgi membrane. J Virol, 81: 9812–9824.CrossRefPubMedCentralPubMedGoogle Scholar
  5. Garcia-Sastre A, Biron CA. 2006. Type 1 interferons and the virus-host relationship: A lesson in detente. Science, 312: 879–882.CrossRefPubMedGoogle Scholar
  6. Geng H, Liu YM, Chan WS, Lo AW, Au DM, Waye MM, Ho YY. 2005. The putative protein 6 of the severe acute respiratory syndrome-associated coronavirus: Expression and functional characterization. FEBS Lett, 579: 6763–6768.CrossRefPubMedGoogle Scholar
  7. Guan Y, Zheng BJ, He YQ, Liu XL, Zhuang ZX, Cheung CL, Luo SW, Li PH, Zhang LJ, Guan YJ, Butt KM, Wong KL, Chan KW, Lim W, Shortridge KF, Yuen KY, Peiris JS, Poon LL. 2003. Isolation and characterization of viruses related to the sars coronavirus from animals in southern china. Science, 302: 276–278.CrossRefPubMedGoogle Scholar
  8. Haagmans BL, Kuiken T, Martina BE, Fouchier RA, Rimmelz-waan GF, van Amerongen G, van Riel D, de Jong T, Itamura S, Chan KH, Tashiro M, Osterhaus AD. 2004. Pegylated interferon-alpha protects type 1 pneumocytes against sars coronavirus infection in macaques. Nat Med, 10: 290–293.CrossRefPubMedGoogle Scholar
  9. Hensley LE, Fritz LE, Jahrling PB, Karp CL, Huggins JW, Geisbert TW. 2004. Interferon-beta 1a and sars coronavirus replication. Emerg Infect Dis, 10: 317–319.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA, Palese P. 2007. Severe acute respiratory syndrome coronavirus open reading frame (orf) 3b, orf 6, and nucleocapsid proteins function as interferon antagonists. J Virol, 81: 548–557.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Kumar P, Gunalan V, Liu B, Chow VT, Druce J, Birch C, Catton M, Fielding BC, Tan YJ, Lal SK. 2007. The nonstructural protein 8 (nsp8) of the sars coronavirus interacts with its orf6 accessory protein. Virology, 366: 293–303.CrossRefPubMedGoogle Scholar
  12. Lu W, Zheng BJ, Xu K, Schwarz W, Du L, Wong CK, Chen J, Duan S, Deubel V, Sun B. 2006. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. Proc Natl Acad Sci U S A, 103: 12540–12545.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Lundberg L, Pinkham C, Baer A, Amaya M, Narayanan A, Wagstaff KM, Jans DA, Kehn-Hall K. 2013. Nuclear import and export inhibitors alter capsid protein distribution in mammalian cells and reduce venezuelan equine encephalitis virus replication. Antiviral Res, 100: 662–672.CrossRefPubMedGoogle Scholar
  14. McBride R, Fielding BC. 2012. The role of severe acute respiratory syndrome (sars)-coronavirus accessory proteins in virus pathogenesis. Viruses, 4: 2902–2923.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Memish ZA, Zumla AI, Al-Hakeem RF, Al-Rabeeah AA, Stephens GM. 2013. Family cluster of middle east respiratory syndrome coronavirus infections. N Engl J Med, 368: 2487–2494.CrossRefPubMedGoogle Scholar
  16. Netland J, Ferraro D, Pewe L, Olivares H, Gallagher T, Perlman S. 2007. Enhancement of murine coronavirus replication by severe acute respiratory syndrome coronavirus protein 6 requires the n-terminal hydrophobic region but not c-terminal sorting motifs. J Virol, 81: 11520–11525.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Randow F, Lehner PJ. 2009. Viral avoidance and exploitation of the ubiquitin system. Nat Cell Biol, 11: 527–534.CrossRefPubMedGoogle Scholar
  18. Reid SP, Leung LW, Hartman AL, Martinez O, Shaw ML, Carbonnelle C, Volchkov VE, Nichol ST, Basler CF. 2006. Ebola virus vp24 binds karyopherin alpha1 and blocks stat1 nuclear accumulation. J Virol, 80: 5156–5167.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Schaecher SR, Mackenzie JM, Pekosz A. 2007. The orf7b protein of severe acute respiratory syndrome coronavirus (sars-cov) is expressed in virus-infected cells and incorporated into sars-cov particles. J Virol, 81: 718–731.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Spiegel M, Pichlmair A, Martinez-Sobrido L, Cros J, Garcia-Sastre A, Haller O, Weber F. 2005. Inhibition of beta interferon induction by severe acute respiratory syndrome coronavirus suggests a two-step model for activation of interferon regulatory factor 3. J Virol, 79: 2079–2086.CrossRefPubMedCentralPubMedGoogle Scholar
  21. Stroher U, DiCaro A, Li Y, Strong JE, Aoki F, Plummer F, Jones SM, Feldmann H. 2004. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon-alpha. J Infect Dis, 189: 1164–1167.CrossRefPubMedGoogle Scholar
  22. Wang J, Yang B, Hu Y, Zheng Y, Zhou H, Wang Y, Ma Y, Mao K, Yang L, Lin G, Ji Y, Wu X, Sun B. 2013. Negative regulation of nmi on virus-triggered type i ifn production by targeting irf7. J Immunol, 191: 3393–3399.CrossRefPubMedGoogle Scholar
  23. Wong GW, Li AM, Ng PC, Fok TF. 2003. Severe acute respiratory syndrome in children. Pediatr Pulmonol, 36: 261–266.CrossRefPubMedGoogle Scholar
  24. Ye Z, Wong CK, Li P, Xie Y. 2008. A sars-cov protein, orf-6, induces caspase-3 mediated, er stress and jnk-dependent apoptosis. Biochim Biophys Acta, 1780: 1383–1387.CrossRefPubMedGoogle Scholar
  25. Yount B, Roberts RS, Sims AC, Deming D, Frieman MB, Sparks J, Denison MR, Davis N, Baric RS. 2005. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. J Virol, 79: 14909–14922.CrossRefPubMedCentralPubMedGoogle Scholar
  26. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in saudi arabia. N Engl J Med, 367: 1814–1820.CrossRefPubMedGoogle Scholar
  27. Zhao J, Falcon A, Zhou H, Netland J, Enjuanes L, Perez Brena P, Perlman S. 2009. Severe acute respiratory syndrome coronavirus protein 6 is required for optimal replication. J Virol, 83: 2368–2373.CrossRefPubMedCentralPubMedGoogle Scholar
  28. Zhou H, Ferraro D, Zhao J, Hussain S, Shao J, Trujillo J, Netland J, Gallagher T, Perlman S. 2010. The n-terminal region of severe acute respiratory syndrome coronavirus protein 6 induces membrane rearrangement and enhances virus replication. J Virol, 84: 3542–3551.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Zhu M, John S, Berg M, Leonard WJ. 1999. Functional association of nmi with stat5 and stat1 in il-2- and ifngamma-mediated signaling. Cell, 96: 121–130.CrossRefPubMedGoogle Scholar
  30. Ziebuhr J. 2004. Molecular biology of severe acute respiratory syndrome coronavirus. Curr Opin Microbiol, 7: 412–419.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Weijia Cheng
    • 1
  • Shiyou Chen
    • 2
  • Ruiling Li
    • 2
  • Yu Chen
    • 2
  • Min Wang
    • 1
  • Deyin Guo
    • 1
    • 2
  1. 1.School of Basic Medical SciencesWuhan UniversityWuhanChina
  2. 2.College of Life SciencesWuhan UniversityWuhanChina

Personalised recommendations