Virologica Sinica

, Volume 30, Issue 1, pp 19–25 | Cite as

Survival and proliferation of the lysogenic bacteriophage CTXΦ in Vibrio cholerae

  • Fenxia FanEmail author
  • Biao Kan


The lysogenic phage CTXΦ of Vibrio cholerae can transfer the cholera toxin gene both horizontally (inter-strain) and vertically (cell proliferation). Due to its diversity in form and species, the complexity of regulatory mechanisms, and the important role of the infection mechanism in the production of new virulent strains of V. cholerae, the study of the lysogenic phage CTXΦ has attracted much attention. Based on the progress of current research, the genomic features and their arrangement, the host-dependent regulatory mechanisms of CTXΦ phage survival, proliferation and propagation were reviewed to further understand the phage’s role in the evolutionary and epidemiological mechanisms of V. cholerae.


Vibrio cholerae lysogenic bacteriophage CTXΦ regulation evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ansaruzzaman M, Bhuiyan N A, Nair B G, Sack D A, Lucas M, Deen J L, Ampuero J, Chaignat C L. 2004. Cholera in Mozambique, variant of Vibrio cholerae. Emerg Infect Dis, 10: 2057–2059.CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bhattacharya T, Chatterjee S, Maiti D, Bhadra R K, Takeda Y, Nair G B, Nandy R K. 2006. Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol, 8: 52 6–634.CrossRefGoogle Scholar
  3. Biao K. 1999. Ph.D. thesis. Structure of the Genome of Lysogenic Bacteriophage CTXphi Without Cholera Toxin Gene and Function of its RS Region. Institute of Epidemiology and Microbiology, Chinese Academy of Preventive Medicine, Beijing.Google Scholar
  4. Biao K, Liu Y Q, Qi G M, Zhang L J, Gao S Y. 2002. Clone and Analysis of CTXphi Prophage Genome which not Carrying Toxin Gene of Vibrio cholerae. Acta Microbiologica Sinica, 42:573–581. (In Chinese)Google Scholar
  5. Boyd E F, Waldor M K. 2002. Evolutionary and functional analyses of variants of the toxin-coregulated pilus protein TcpA from toxigenic Vibrio cholerae non-O1/non-O139 serogroup isolates. Microbiology, 148: 1655–1666.PubMedGoogle Scholar
  6. Boyd E F, Heilpern A J, Waldor M K. 2000. Molecular analyses of a putative CTXphi precursor and evidence for independent acquisition of distinct CTX(phi)s by toxigenic Vibrio cholerae. J Bacteriol, 182: 5530–5538.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Click E M, Webster R E. 1997. Filamentous phage infection: required interactions with the TolA protein. J Bacteriol, 179: 6464–6471.PubMedCentralPubMedGoogle Scholar
  8. Connell T D, Metzger D J, Lynch J, Folster J P. 1998. Endochitinase is transported to the extracellular milieu by the eps-encoded general secretory pathway of Vibrio cholerae. J Bacteriol, 180: 5591–5600.PubMedCentralPubMedGoogle Scholar
  9. Davis B M, Kimsey H H, Chang W, Waldor M K. 1999. The Vibrio cholerae O139 Calcutta bacteriophage CTXphi is infectious and encodes a novel repressor. J Bacteriol, 181: 6779–6787.PubMedCentralPubMedGoogle Scholar
  10. Davis B M, Kimsey H H, Kane A V, Waldor M K. 2002. A satellite phage-encoded antirepressor induces repressor aggregation and cholera toxin gene transfer. EMBO J, 21: 4240–4249.CrossRefPubMedCentralPubMedGoogle Scholar
  11. Davis B M, Lawson E H, Sandkvist M, Ali A, Sozhamannan S, Waldor M K. 2000a. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTXphi. Science, 288: 333–335.CrossRefPubMedGoogle Scholar
  12. Davis B M, Moyer K E, Boyd E F, Waldor M K. 2000b. CTX prophages in classical biotype Vibrio cholerae: functional phage genes but dysfunctional phage genomes. J Bacteriol, 182: 6992–6998.CrossRefPubMedCentralPubMedGoogle Scholar
  13. Davis B M, Waldor M K. 2000c. CTXphi contains a hybrid genome derived from tandemly integrated elements. Proc Natl Acad Sci U S A, 97: 8572–8577.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Dziejman M, Balon E, Boyd D, Fraser C M, Heidelberg J F, Mekalanos J J. 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. Proc Natl Acad Sci U S A, 99: 1556–1561.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Faruque S M, Asadulghani, Rahman M M, Waldor M K, Sack D A. 2000. Sunlight-induced propagation of the lysogenic phage encoding cholera toxin. Infect Immun, 68: 4795–4801.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Heidelberg J F, Eisen J A, Nelson W C, Clayton R A, Gwinn M L, Dodson R J, Haft D H, Hickey E K, Peterson J D, Umayam L, Gill S R, Nelson K E, Read T D, Tettelin H, Richardson D, Ermolaeva M D, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann R D, Nierman W C, White O, Salzberg S L, Smith H O, Colwell R R, Mekalanos J J, Venter J C, Fraser C M. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature, 406: 477–483.CrossRefPubMedGoogle Scholar
  17. Heilpern A J, Waldor M K. 2000. CTXphi infection of Vibrio cholerae requires the tolQRA gene products. J Bacteriol, 182: 1739–1747.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Heilpern A J, Waldor M K. 2003. pIIICTX, a predicted CTXphi minor coat protein, can expand the host range of coliphage fd to include Vibrio cholerae. J Bacteriol, 185: 1037–1044.CrossRefPubMedCentralPubMedGoogle Scholar
  19. Herrington D A, Hall R H, Losonsky G, Mekalanos J J, Taylor R K, Levine M M. 1988. Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med, 168: 1487–1492.CrossRefPubMedGoogle Scholar
  20. Huber K E, Waldor M K. 2002. Filamentous phage integration requires the host recombinases XerC and XerD. Nature, 417: 656–659.CrossRefPubMedGoogle Scholar
  21. Kamruzzaman M, Robins W P, Bari S M, Nahar S, Mekalanos J J, Faruque S M. 2014. RS1 satellite phage promotes diversity of toxigenic Vibrio cholerae by driving CTX prophage loss and elimination of lysogenic immunity. Infect Immun, 82: 3636–3643.CrossRefPubMedGoogle Scholar
  22. Kan B, Qi G M, Liu Y Q, Liu C L, Gao S Y. 1999. Genome of bacteriophage CTXφ without the presence of ctxAB exists in ctxAB? strains of Vibrio cholerae. Chin J Microb Immunol, 19: 175–179. (In Chinese)Google Scholar
  23. Kim E J, Lee D, Moon S H, Lee C H, Kim S J, Lee J H, Kim J O, Song M, Das B, Clemens J D, Pape J W, Nair G B, Kim D W. 2014. Molecular Insights Into the Evolutionary Pathway of Vibrio cholerae O1 Atypical El Tor Variants. PLoS Pathog, 10: e1004384.CrossRefPubMedCentralPubMedGoogle Scholar
  24. Kimsey H H, Waldor M K. 1998. CTXphi immunity: application in the development of cholera vaccines. Proc Natl Acad Sci U S A, 95: 7035–7039.CrossRefPubMedCentralPubMedGoogle Scholar
  25. Kimsey H H, Waldor M K. 2004. The CTXphi repressor RstR binds DNA cooperatively to form tetrameric repressor-operator complexes. J Biol Chem, 279: 2640–2647.CrossRefPubMedGoogle Scholar
  26. Kimsey H H, Waldor M K. 2009. Vibrio cholerae LexA coordinates CTX prophage gene expression. J Bacteriol, 191: 6788–6795.CrossRefPubMedCentralPubMedGoogle Scholar
  27. Kirn T J, Lafferty M J, Sandoe C M, Taylor R K. 2000. Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol Microbiol, 35: 896–910.CrossRefPubMedGoogle Scholar
  28. Koonin E V. 1992. The second cholera toxin, Zot, and its plasmid-encoded and phage-encoded homologues constitute a group of putative ATPases with an altered purine NTP-binding motif. FEBS Lett, 312: 3–6.CrossRefPubMedGoogle Scholar
  29. Krukonis E S, DiRita V J. 2003. From motility to virulence: Sensing and responding to environmental signals in Vibrio cholerae. Curr Opin Microbiol, 6: 186–190.CrossRefPubMedGoogle Scholar
  30. Kumar P, Thulaseedharan A, Chowdhury G, Ramamurthy T, Thomas S. 2011. Characterization of novel alleles of toxin coregulated pilus A gene (tcpA) from environmental isolates of Vibrio cholerae. Curr Microbiol, 62: 758–763.CrossRefPubMedGoogle Scholar
  31. Li F, Du P, Li B, Ke C, Chen A, Chen J, Zhou H, Li J, Morris J G, Jr., Kan B, Wang D. 2014. Distribution of virulence-associated genes and genetic relationships in non-O1/O139 Vibrio cholerae aquatic isolates from China. Appl Environ Microbiol, 80: 4987–4992.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Li M, Kotetishvili M, Chen Y, Sozhamannan S. 2003. Comparative genomic analyses of the vibrio pathogenicity island and cholera toxin prophage regions in nonepidemic serogroup strains of Vib rio cholerae. Appl Environ Microbiol, 69: 1728–1738.CrossRefPubMedCentralPubMedGoogle Scholar
  33. Liu G W, Yan M Y, Qi G M, Gao S Y, Kan B. 2005. study on infection of different strains Vibrio cholerae O1 by El tor CTXphi. Acta Microbiologica Sinica, 45: 758–762. (In Chinese)Google Scholar
  34. Maiti D, Das B, Saha A, Nandy R K, Nair G B, Bhadra R K. 2006. Genetic organization of pre-CTX and CTX prophages in the genome of an environmental Vibrio cholerae non-O1, non-O139 strain. Microbiology, 152: 3633–3641.CrossRefPubMedGoogle Scholar
  35. Meibom K L, Blokesch M, Dolganov N A, Wu C Y, Schoolnik G K. 2005. Chitin induces natural competence in Vibrio cholerae. Science, 310: 1824–1827.CrossRefPubMedGoogle Scholar
  36. Moyer K E, Kimsey H H, Waldor M K. 2001. Evidence for a rolling-circle mechanism of phage DNA synthesis from both replicative and integrated forms of CTXphi. Mol Microbiol, 41: 311–323.CrossRefPubMedGoogle Scholar
  37. Mukhopadhyay A K, Chakraborty S, Takeda Y, Nair G B, Berg D E. 2001. Characterization of VPI pathogenicity island and CTXphi prophage in environmental strains of Vibrio cholerae. J Bacteriol, 183: 4737–4746.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Nair G B, Faruque S M, Bhuiyan N A, Kamruzzaman M, Siddique A K, Sack D A. 2002. New variants of Vibrio cholerae O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. J Clin Microbiol, 40: 3296–3299.CrossRefPubMedCentralPubMedGoogle Scholar
  39. Nandi S, Maiti D, Saha A, Bhadra R K. 2003. Genesis of variants of Vibrio cholerae O1 biotype El Tor: role of the CTXphi array and its position in the genome. Microbiology, 149: 89–97.CrossRefPubMedGoogle Scholar
  40. Neely M N, Friedman D I. 1998. Functional and genetic analysis of regulatory regions of coliphage H-19B: location of shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. Mol Microbiol, 28: 1255–1267.CrossRefPubMedGoogle Scholar
  41. Ochman H, Lawrence J G, Groisman E A. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature, 405: 299–304.CrossRefPubMedGoogle Scholar
  42. Quinones M, Kimsey H H, Waldor M K. 2005. LexA cleavage is required for CTX prophage induction. Mol Cell, 17: 291–300.CrossRefPubMedGoogle Scholar
  43. Rasched I, Oberer E. 1986. Ff coliphages: structural and functional relationships. Microbiol Rev, 50: 401–427.PubMedCentralPubMedGoogle Scholar
  44. Riechmann L, Holliger P. 1997. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell, 90: 351–360.CrossRefGoogle Scholar
  45. Russel M. 1995. Moving through the membrane with filamentous phages. Trends Microbiol, 3: 223–228.CrossRefPubMedGoogle Scholar
  46. Russel M, Whirlow H, Sun T P, Webster R E. 1988. Low-frequency infection of F-bacteria by transducing particles of filamentous bacteriophages. J Bacteriol, 170: 5312–5316.PubMedCentralPubMedGoogle Scholar
  47. Sandkvist M. 2001. Type II secretion and pathogenesis. Infect Immun, 69: 3523–3535.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Sandkvist M, Michel L O, Hough L P, Morales V M, Bagdasarian M, Koomey M, DiRita V J. 1997. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J Bacteriol, 179: 6994–7003.PubMedCentralPubMedGoogle Scholar
  49. Sun T P, Webster R E. 1987. Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J Bacteriol, 169: 2667–2674.PubMedCentralPubMedGoogle Scholar
  50. Tacket C O, Taylor R K, Losonsky G, Lim Y, Nataro J P, Kaper J B, Levine M M. 1998. Investigation of the roles of toxin-coregulated pili and mannose-sensitive hemagglutinin pili in the pathogenesis of Vibrio cholerae O139 infection. Infect Immun, 66: 692–695.PubMedCentralPubMedGoogle Scholar
  51. Trucksis M, Michalski J, Deng Y K, Kaper J B. 1998. The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci U S A, 95: 14464–14469.CrossRefPubMedCentralPubMedGoogle Scholar
  52. Waldor M K, Mekalanos J J. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272: 1910–1914.CrossRefPubMedGoogle Scholar
  53. Waldor M K, Rubin E J, Pearson G D, Kimsey H, Mekalanos J J. 1997. Regulation, replication, and integration functions of the Vibrio cholerae CTXphi are encoded by region RS2. Mol Microbiol, 24: 917–926.CrossRefPubMedGoogle Scholar
  54. Wang D, Wang X, Li B, Deng X, Tan H, Diao B, Chen J, Ke B, Zhong H, Zhou H, Ke C, Kan B. 2014. High prevalence and diversity of pre-CTXPhi alleles in the environmental Vibrio cholerae O1 and O139 strains in the Zhujiang River estuary. Environ Microbiol Rep, 6: 251–258.CrossRefPubMedGoogle Scholar
  55. Webster R E. 1991. The tol gene products and the import of macromolecules into Escherichia coli. Mol Microbiol, 5: 1005–1011.CrossRefPubMedGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations