Skip to main content

Phage lytic enzymes: a history

Abstract

There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well (Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specific disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay (Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes-from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

This is a preview of subscription content, access via your institution.

References

  • Abedon ST. 2011. Bacteriophage prehistory: is or is not Hankin, 1896, a phage reference? Bacteriophage, 1: 174–178.

    Article  PubMed Central  PubMed  Google Scholar 

  • Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. 2011. Phage Treatment of human infections. Bacteriophage, 1: 66–85.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein D, Fischetti VA. 1997. Method for exposing group a streptococcal antigens and an improved diagnostic test for the identification of group a streptococci. US Patent 05604109.

    Google Scholar 

  • Briersa Y, Walmagha M, Van Puyenbroecka V, Cornelissena A, Cenensb W, Aertsenb A, Oliveirac H, Azeredoc J, Verweend G, Pirnayd JP, Miller S, Volckaerta G, Lavignea R. 2014. Engineered Endolysin-Based “Artilysins” To Combat Multidrug-Resistant Gram-Negative Pathogens. MBio, 5: e01379–14.

    Google Scholar 

  • Bruynoghe R, Maisin J. 1921. Essais de thérapeutique au moyen du bactériophage du Staphylocoque. Compt Rend Soc Biol, 85:1120–1121. (In French)

    Google Scholar 

  • Cutter CN, Dorsa WJ, Siragusa GR. 1996. A rapid microbial ATP bioluminescence assay for meat carcasses. Dairy, Food & Environ. San, 16: 726–736.

    Google Scholar 

  • d’Herelle FH. Sur un microbe invisible antagoniste des bacilles dysenteriques.1917. C R Acad Sci Gen, 165: 373–375. (In French)

    Google Scholar 

  • d’Hérelle F. 1931. Bacteriophagy and recovery from infectious disease. Can Med Assoc J. 24: 619–628

    PubMed Central  PubMed  Google Scholar 

  • Filatova LYu, Levashov AV, Dmitrieva NF, Eshchina AS, Klyachko NL. 2008. Encapsulation of enzyme lysing group A streptococci to improve its stability. Proc XVIth Int Workshop on Bioencapsulation. Marison I, Poncelet D, Eds., Dublin, Ireland, pp1–4.

    Google Scholar 

  • Fischetti VA. 2005. Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol, 13: 491–496.

    Article  CAS  PubMed  Google Scholar 

  • Fischetti VA, Gotschlich EC, Bernheimer AW. 1971. Purification and Physical Properties of Group C Streptococcal Phage Associated Lysin. J Exp Med, 133: 1105–1117.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fischetti VA, Loomis L. 1999. Prophylactic and therapeutic treatment of group A streptococcal infection. US Patent 5,985,271 A.

    Google Scholar 

  • Florin P. 2006. Bacterial Contamination in a Field Hospital. Proc CBMTS-VI. Spiez, Switzerland.

    Google Scholar 

  • Hasan JAK, S Garg, L Loomis, D Miller, and RR Colwell. 1997. A rapid surface-monitoring method for bacteria employing ATP bioluminescence. Abstr 97th General Meeting of Am. Soc. Microbiol, abstr I-026.

    Google Scholar 

  • Hankin ME. 1896. L’action bactéricide des eaux de la Jumna et du Gange sur le vibrion du choléra. Ann Inst Pasteur (Paris), 10:511–523. (In French)

    Google Scholar 

  • Harper DR, Kutter E. 2008. Bacteriophage: therapeutic use. Encyclopedia of Life Sciences. Chichester, UK: John Wiley & Sons, Ltd.; pp1–7.

    Google Scholar 

  • Ho K. 2001. Bacteriophage therapy for bacterial infections. Rekindling a memory from the pre-antibiotics era. Perspect Biol Med, 44: 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Hoopes JT, Stark CJ, Kim HA, Sussman DJ, Donovan DM, Nelson DC. 2009. Use of a bacteriophage lysin, PlyC, as an enzyme disinfectant against Streptococcus equi. Appl Environ Microbiol, 75: 1388–1394.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krause RM.1958. Studies on the Bacteriophages of Hemolytic Streptococci. J Exp Med, 108: 803–821.

  • Klyachko NL, Dmitrieva NF, Eshchina AS, Ignatenko OV, Filatova LY, Rainina EI, Kazarov AK, Levashov AV. 2008. Bacteriophage enzyme for the prevention and treatment of bacterial infections: stability and stabilization of the enzyme lysing Streptococcus pyogenes cells. Russ J Bioorganic Chem, 34: 375–379.

    Article  CAS  Google Scholar 

  • Maxted WR. 1957. The Active Agent in Nascent Phage Lysis of Streptococci. J Gen Micro, 16: 585–595.

    Article  Google Scholar 

  • Nelson D, Loomis L, Fischetti VA. 2001. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using bacteriophage lytic enzyme, Proc Natl Acad Sci U S A, 98:4107–4112.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roach DR, Khatibi PA, Bischoff KM, Hughes SR and Donovan DM. 2013. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels, 6:20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schmelcher M, Powella A, Beckera S, Campb M, Donovan D. 2012. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis — causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol, 78: 2297–2305.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuch R, Nelso D, Fischetti V. 2002. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature, 418: 884–889.

    Article  CAS  PubMed  Google Scholar 

  • Siragusa GR, Cutter CN, Dorsa WJ, Koohmaraie M. 1995. Use of a rapid microbial ATP bio- luminescence assay to detect contamination on beef and pork carcasses. J Food Prot, 58: 770–775.

    CAS  Google Scholar 

  • Siragusa GR, Dorsa WJ, Cutter CN, Perino LJ, Koohmaraie M. 1996. Use of a newly developed rapid microbial ATP bioluminescence assay to detect microbial contamination on poultry carcasses. J Biolumin Chemilumin, 11: 297–301.

    Article  CAS  PubMed  Google Scholar 

  • Stopa PJ, Tieman D, Coon PA, Milton MM, Paterno D. 1999. Detection of biological aerosols by luminescence techniques. Field Anal Chem Technol, 3: 283–290.

    Article  CAS  Google Scholar 

  • Sulakvelidze A, Barrow P. 2005. Phage therapy in animals and agribusiness. In: Bacteriophages: Biology and Applications. Kutter E, Sulakvelidze. Boca Raton: CRC Press. pp335–380.

    Google Scholar 

  • Summers WC. 2001. Bacteriophage therapy. Annu Rev Microbiol, 55: 437–451.

    Article  CAS  PubMed  Google Scholar 

  • Trudil D. 2002. Use of phage associated lytic enzymes for rapid detection of bacterial contaminants (priority date 1999). US Patent 6395504.

    Google Scholar 

  • Trudil D, Rainina E. 2006. Use of Lytic Enzymes for Microbiological Decontamination of Sensitive Facilities. Proc 5TH SISPAT, Singapore.

    Google Scholar 

  • Twort FW. 1915. An investigation on the nature of ultramicroscopic viruses. Lancet, 186: 1241–1246.

    Article  Google Scholar 

  • Yang H, Zhang Y, Yu J, Huang Y, Zhang XE, Wei H. 2014. Novel chimeric lysin with high-level antimicrobial activity against methicillin-resistant Staphylococcus aureus in vitro and in vivo. Antimicrob Agents Ch, 58: 536–542.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Trudil.

Additional information

ORCID: 0000-0002-4114-8138

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trudil, D. Phage lytic enzymes: a history. Virol. Sin. 30, 26–32 (2015). https://doi.org/10.1007/s12250-014-3549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-014-3549-0

Keywords

  • bacteriophage
  • phage lytic enzymes
  • translational application
  • lysin