Skip to main content

Bacteriophage therapy against Enterobacteriaceae

Abstract

The Enterobacteriaceae are a class of gram-negative facultative anaerobic rods, which can cause a variety of diseases, such as bacteremia, septic arthritis, endocarditis, osteomyelitis, lower respiratory tract infections, skin and soft-tissue infections, urinary tract infections, intra-abdominal infections and ophthalmic infections, in humans, poultry, animals and fish. Disease caused by Enterobacteriaceae cause the deaths of millions of people every year, resulting in enormous economic loss. Drug treatment is a useful and efficient way to control Enterobacteriaceae infections. However, with the abuse of antibiotics, drug resistance has been found in growing number of Enterobacteriaceae infections and, as such, there is an urgent need to find new methods of control. Bacteriophage therapy is an efficient alternative to antibiotics as it employs a different antibacterial mechanism. This paper summarizes the history of bacteriophage therapy, its bacterial lytic mechanisms, and the studies that have focused on Enterobacteriaceae and bacteriophage therapy.

This is a preview of subscription content, access via your institution.

References

  • Abedon ST, Thomas-Abedon C. 2010. Phage therapy pharmacology. Curr Pharm Biotechnol, 11:28–47.

    Article  CAS  PubMed  Google Scholar 

  • Albert MJ, Faruque SM, Faruque AS, Neogi PK, Ansaruzzaman M, Bhuiyan NA, Alam K, Akbar MS. 1995. Controlled study of Escherichia coli diarrheal infections in Bangladeshi children. J Clin Microbiol, 33:973–977.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Anderson ES, Ward L, DeSaxe M, de Sa JD. 1977. Bacteriophage-typing designations of Salmonella typhimurium. J Hyg (Lond), 78:297–300.

    Article  CAS  Google Scholar 

  • Angulo FJ, Johnson KR, Tauxe RV, Cohen ML. 2000. Significance and sources of antimicrobial-resistant nontyphoidal Salmonella infections in the United States. Microb Drug Resist, 6:77–83.

    Article  CAS  PubMed  Google Scholar 

  • Atterbury RJ, Van Bergen MA, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA. 2007. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl Environ Microbiol, 73:4543–4549.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babalova EG, Katsitadze KT, Sakvarelidze LA, Imnaishvili NSh, Sharashidze TG, Badashvili VA, Kiknadze GP, Meĭpariani AN, Gendzekhadze ND, Machavariani EV, Gogoberidze KL, Gozalov EI, Dekanosidze NG. 1968. Preventive value of dried dysentery bacteriophage. Zh Mikrobiol Epidemiol Immunobiol, 45:143–145. (In Russian)

    CAS  PubMed  Google Scholar 

  • Bentley R, Bennett JW. 2003. What is an antibiotic? Revisited. Adv Appl Microbiol, 52:303–331.

    Article  CAS  Google Scholar 

  • Bhan MK, Mahalanabis D, Fontaine O, Pierce NF. 1994. Clinical trials of improved oral rehydration salt formulations: a review. Bull World Health Organ, 72:945–955.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Born Y, Fieseler L, Marazzi J, Lurz R, Duffy B, Loessner MJ. 2011. Novel virulent and broad-host-range Erwinia amylovora bacteriophages reveal a high degree of mosaicism and a relationship to Enterobacteriaceae phages. Appl Environ Microbiol, 77:5945–5954.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bruynoghe R, Maisin J. 1921. Essais de the rapeutique au moyen du bacteriophage. C R Soc Biol, 85:1120–1121.

    Google Scholar 

  • Burrowes B, Harper DR, Anderson J, McConville M, Enright MC. 2011. Bacteriophage therapy: potential uses in the control of antibiotic-resistant pathogens. Expert Rev Anti Infect Ther, 9:775–785.

    Article  PubMed  Google Scholar 

  • Capparelli R, Nocerino N, Iannaccone M, Ercolini D, Parlato M, Chiara M, Iannelli D. 2010. Bacteriophage therapy of Salmonella enterica: a fresh appraisal of bacteriophage therapy. J Infect Dis, 201:52–61.

    Article  CAS  PubMed  Google Scholar 

  • Carlton RM. 1999. Phage therapy: past history and future prospects. Arch Immunol Ther Exp (Warsz), 47:267–274.

    CAS  Google Scholar 

  • Chaudhry WN, Haq IU, Andleeb S, Qadri I. 2014. Characterization of a virulent bacteriophage LK1 specific for Citrobacter freundii isolated from sewage water. J Basic Microbiol, 54:531–541.

    Article  CAS  PubMed  Google Scholar 

  • Chhibber S, Kaur S, Kumari S. 2008. Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol, 57:1508–1513.

    Article  PubMed  Google Scholar 

  • Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. 2010. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother, 54:1603–1612.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Denou E, Bruttin A, Barretto C, Ngom-Bru C, Brüssow H, Zuber S. 2009. T4 phages against Escherichia coli diarrhea: potential and problems. Virology, 388:21–30.

    Article  CAS  PubMed  Google Scholar 

  • Denyes JM, Krell PJ, Manderville RA, Ackermann HW, She YM, Kropinski AM. 2014. The genome and proteome of Serratia bacteriophage η which forms unstable lysogens. Virol J, 11:6.

    Article  PubMed Central  PubMed  Google Scholar 

  • d’Herelle F. 1917. Sur un microbe invisible antagoniste des bacilles dysentériques. Cr Acad Sci (Paris), 165: 373–375. (In French)

    Google Scholar 

  • Díaz E, López R, García JL. 1990. Chimeric phage-bacterial enzymes:a clue to the modular evolution of genes. Proc Natl Acad Sci U S A, 87:8125–8129.

    Article  PubMed Central  PubMed  Google Scholar 

  • Donnenberg MS. 2002. Evolution of pathogenic Escherichia coli. In Escherichia coli: virulence mechanisms of a versatile pathogen. Amsterdam: Academic Press. pp. 55–173.

    Google Scholar 

  • Falagas ME, Kastoris AC, Kapaskelis AM, Karageorgopoulos DE. 2010. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis, 10:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Fischetti VA. 2008. Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol, 11:393–400.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gründling A, Bläsi U, Young R. 2000. Genetic and biochemical analysis of dimer and oligomer interactions of the lambda S holin. J Bacteriol, 182: 6082–6090.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gründling A, Smith DL, Bläsi U, Young R. 2000. Dimerization between the holin and holin inhibitor of phage lambda. J Bacteriol, 182:6075–6081.

    Article  PubMed Central  PubMed  Google Scholar 

  • Gu J, Liu X, Li Y, Han W, Lei L, Yang Y, Zhao H, Gao Y, Song J, Lu R, Sun C, Feng X. 2012. A method for generation phage cocktail with great therapeutic potential. PLoS One, 7:e31698.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gupta R, Prasad Y. 2011. Efficacy of polyvalent bacteriophage p-27/HP to control multidrug resistant Staphylococcus aureus associated with human infections. Curr Microbiol, 62:255–260.

    Article  CAS  PubMed  Google Scholar 

  • Hankin E. 1896. L’action bactéricide des eaux de la Jumna et du Gange sur le vibrion du choléra. Ann Inst Pasteur (Paris), 10:511–523. (In French)

    Google Scholar 

  • Heithoff DM, Shimp WR, Lau PW, Badie G, Enioutina EY, Daynes RA, Byrne BA, House JK, Mahan MJ. 2008. Human Salmonella clinical isolates distinct from those of animal origin. Appl Environ Microbiol, 74:1757–1766.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hung CH, Kuo CF, Wang CH, Wu CM, Tsao N. 2011. Experimental phage therapy in treating Klebsiella pneumoniae-mediated liver abscesses and bacteremia in mice. Antimicrob Agents Chemother, 55:1358–1365.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Iino T, Mitani M. 1967. Infection of Serratia marcescens by bacteriophage χ. J Virol, 1:445–447.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Larson EL, Cimiotti JP, Haas J, Nesin M, Allen A, Della-Latta P, Saiman L. 2005. Gram-negative bacilli associated with catheter-associated and non-catheter-associated bloodstream infections and hand carriage by healthcare workers in neonatal intensive care units. Pediatr Crit Care Med, 6:457–461.

    Article  PubMed  Google Scholar 

  • Lazareva EB, Smirnov SV, Khvatov VB, Spiridonova TG, Bitkova EE, Darbeeva OS, Maĭskaia LM, Parfeniuk RL, Men’shikov DD. 2001. Efficacy of bacteriophages in complex treatment of patients with burn wounds. Antibiot Khimioter, 46:10–14.

    CAS  PubMed  Google Scholar 

  • Leverentz B, Conway WS, Alavidze Z, Janisiewicz WJ, Fuchs Y, Camp MJ, Chighladze E, Sulakvelidze A. 2001. Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot, 64:1116–1121.

    CAS  PubMed  Google Scholar 

  • Levine OS, Levine MM. 1991. Houseflies (Musca domestica) as mechanical vectors of shigellosis. Rev Infect Dis, 13:688–696.

    Article  CAS  PubMed  Google Scholar 

  • Loessner MJ. 2005. Bacteriophage endolysins—current state of research and applications. Curr Opin Microbol, 8:480–487.

    Article  CAS  Google Scholar 

  • Malik R, Chhibber S. 2009. Protection with bacteriophage KØ1 against fatal Klebsiella pneumoniae-induced burn wound infection in mice. J Microbiol Immunol Infect, 42:134–140.

    PubMed  Google Scholar 

  • Maragakis LL, Winkler A, Tucker MG, Cosgrove SE, Ross T, Lawson E, Carroll KC, Perl TM. 2008. Outbreak of multidrug-resistant Serratia marcescens infection in a neonatal intensive care unit. Infect Control Hosp Epidemiol, 29:418–423.

    Article  PubMed  Google Scholar 

  • Matsushita K, Uchiyama J, Kato S, Ujihara T, Hoshiba H, Sugihara S, Muraoka A, Wakiguchi H, Matsuzaki S. 2009. Morphological and genetic analysis of three bacteriophages of Serratia marcescens isolated from environmental water. FEMS Microbiol Lett, 291:201–208.

    Article  CAS  PubMed  Google Scholar 

  • McAuliffe O, Ross RP, Fitzgerals GF. 2007. The new phage biology: from genomics to applications. In Bacteriophage: Genetics and Molecular Biology (1st ed.). Mc Grath S and van Sinderen D. Norfolk, Engand: Caister Academic Press. pp. 1–42.

    Google Scholar 

  • Merril CR, Scholl D, Adhya SL. 2003. The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov, 2:489–497.

    Article  CAS  PubMed  Google Scholar 

  • Messerschmidt A, Prayer D, Olischar M, Pollak A, Birnbacher R. 2004. Brain abscesses after Serratia marcescens infection on a neonatal intensive care unit: differences on serial imaging. Neuroradiology, 46:148–152.

    Article  CAS  PubMed  Google Scholar 

  • Niyogi SK. 2005. Shigellosis. J Microbiol, 43:133–143.

    PubMed  Google Scholar 

  • Pang T, Savva CG, Fleming KG, Struck DK, Young R. 2009. Structure of the lethal phage pinhole. Proc Natl Acad Sci U S A, 106:18966–18971.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pastagia M, Schuch R, Fischetti VA, Huang DB. 2013. Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol, 62:1506–1516.

    Article  CAS  PubMed  Google Scholar 

  • Paterson DL. 2006. Resistance in gram-negative bacteria: Enterobacteriaceae. Am J Med, 119:S20–28.

    Article  CAS  PubMed  Google Scholar 

  • Payne RJ, Phil D, Jansen VA. 2000. Bacteriaphage therapy: the pecculiar kinetics of self-replicating pharmaceuticals. Clin Pharmacol Ther, 68: 225–230.

    Article  CAS  PubMed  Google Scholar 

  • Phalipon A, Sansonetti PJ. 2007. Shigella’s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol, 85:119–129.

    Article  CAS  PubMed  Google Scholar 

  • Qian ZW, Yue QA, Tian FL. 2007. Study overview of phagotherapy. Med Recapitulate, 13:1256–1258. (In Chinese)

    Google Scholar 

  • Ramanculov E, Young R. 2001. Genetic analysis of the T4 holin: timing and topology. Gene, 265:25–36.

    Article  CAS  PubMed  Google Scholar 

  • Reed CA, Langlais C, Kuznetsov V, Young R. 2012. Inhibitory mechanism of the Qβ lysis protein A2. Mol Microbiol, 86:836–844.

    Article  CAS  PubMed  Google Scholar 

  • Samsygina GA, Boni EG. 1984. Bacteriophages and phage therapy in pediatric practice. Pediatriia, 4:67–70. (In Russian)

    PubMed  Google Scholar 

  • Savva CG, Dewey JS, Deaton J, White RL, Struck DK, Holzenburg A, Young R. 2008. The holin of bacteriophage lambda forms rings with large diameter. Mol Microbiol, 69:784–793.

    Article  CAS  PubMed  Google Scholar 

  • Sarker SA, McCallin S, Barretto C, Berger B, Pittet AC, Sultana S, Krause L, Huq S, Bibiloni R, Bruttin A, Reuteler G, Brüssow H. 2012. Oral T4-like phage cocktail application to healthy adult volunteers from Bangladesh. Virology, 434:222–232.

    Article  CAS  PubMed  Google Scholar 

  • Savarino SJ, Hall ER, Bassily S, Wierzba TF, Youssef FG, Peruski LF Jr, Abu-Elyazeed R, Rao M, Francis WM, El Mohamady H, Safwat M, Naficy AB, Svennerholm AM, Jertborn M, Lee YJ, Clemens JD. 2002. Introductory evaluation of an oral, killed whole cell enterotoxigenic Escherichia coli plus cholera toxin B subunit vaccine in Egyptian infants. Pediatr Infect Dis J, 21:322–330.

    Article  PubMed  Google Scholar 

  • Sharma M, Patel JR, Conway WS, Ferguson S, Sulakvelidze A. 2009. Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettucet. J Food Prot, 72:1481–1485.

    PubMed  Google Scholar 

  • Shi Y, Yan Y, Ji W, Du B, Meng X, Wang H, Sun J. 2012. Characterization and determination of holin protein of Streptococcus suis bacteriophage SMP in heterologous host. Virol J, 9:70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Si XD. 1955. Bacillary dysentery therapy using dysentery phage. Nat Med J China, 41:824–834. (In Chinese)

    Google Scholar 

  • Smith HW, Huggins MB. 1983. Effectiveness of phages in treating experimental Escherichia coli diarrhea in calves, piglets and lambs. J Gen Microbiol, 129:2659–2675.

    CAS  PubMed  Google Scholar 

  • Snyder JD, Merson MH. 1982. The magnitude of the global problem of acute diarrheal disease: a review of active surveillance data. Bull World Health Organ, 60:605–613.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Subekti D, Oyofo BA, Tjaniadi P, Corwin AL, Larasati W, Putri M, Simanjuntak CH, Punjabi NH, Taslim J, Setiawan B, Djelantik AA, Sriwati L, Sumardiati A, Putra E, Campbell JR, Lesmana M. 2001. Shigella spp. surveillance in Indonesia: the emergence or reemergence of S. dysenteriae. Emerg Infect Dis, 7:137–140.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sulakvelidze A, Alavidze Z, Morris Jr JG. 2001. Bacteriophage therapy. Antimicrob Agents Chemother, 45: 649–659.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Summers WC. 1999. Bacteriophage discovered, in Felix d’Herelle and the origins of molecular biology. New Haven, CT: Yale University Press. pp. 47–59.

    Google Scholar 

  • Tanaka S, Clemons WM Jr. 2012. Minimal requirements for inhibition of MraY by lysis protein E from bacteriophage φX174. Mol Microbiol, 85:975–985.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tsay RW, Siu LK, Fung CP, Chang FY. 2002. Characteristics of bacteremia between community-acquired and nosocomial Klebsiella pneumoniae infection: risk factor for mortality and the impact of capsular serotypes as a herald for community-acquired infection. Arch Intern Med, 162:1021–1027.

    Article  PubMed  Google Scholar 

  • Twort FW. 1915. An investigation on the nature of ultra-microscopic viruses. Lancet, 189:1241–1243.

    Article  Google Scholar 

  • Verma V, Harjai K, Chhibber S. 2010. Structural changes induced by a lytic bacteriophage make ciprofloxacin effective against older biofilm of Klebsiella pneumoniae. Biofouling, 26:729–737.

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Harjai K, Chhibber S. 2009. Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatment. J Antimicrob Chemother, 64:1212–1218.

    Article  CAS  PubMed  Google Scholar 

  • Wall SK, Zhang J, Rostagno MH, Ebner PD. 2010. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl Environ Microbiol, 76:48–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu M, Struck DK, Deaton J, Wang IN, Young R. 2004. A signal-arrest-release sequence mediates export and control of the phage P1 endolysin. Proc Natl Acad Sci U S A, 101:6415–6420.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Q, Wang H, Chen M, Ni Y, Yu Y, Hu B, Sun Z, Huang W, Hu Y, Ye H, Badal RE, Xu Y. 2010. Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002–2009 study for monitoring antimicrobial Resistance trends (SMART). Int J Antimicrob Agents, 36:507–512.

    Article  CAS  PubMed  Google Scholar 

  • Yasuike M, Sugaya E, Nakamura Y, Shigenobu Y, Kawato Y, Kai W, Fujiwara A, Sano M, Kobayashi T, Nakai T. 2013. Complete genome sequences of Edwardsiella tarda-lytic bacteriophages KF-1 and IW-1. Genome Announc, 1: e00089–12.

    PubMed Central  PubMed  Google Scholar 

  • Young R. 1992. Bacteriophage lysis: mechanism and regulation. Microbiol Rev, 56:430–481.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Young R, Bläsi U. 1995. Holins: form and function in bacteriophage lysis. FEMS Microbiol Rev, 17:191–205.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi Cheng.

Additional information

ORCID: 0000-0003-0534-7508

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, Y., Liu, Y. et al. Bacteriophage therapy against Enterobacteriaceae . Virol. Sin. 30, 11–18 (2015). https://doi.org/10.1007/s12250-014-3543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-014-3543-6

Keywords

  • bacteriophage therapy
  • Enterobacteriaceae
  • antibiotics
  • bacteriolytic mechanism