Skip to main content

Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses

Abstract

Three crucial hurdles hinder studies on human cytomegalovirus (HCMV): strict species specificity, differences between in vivo and in vitro infection, and the complexity of gene regulation. Ever since the sequencing of the whole genome was first accomplished, functional studies on individual genes have been the mainstream in the CMV field. Gene regulation has therefore been elucidated in a more detailed fashion. However, viral gene regulation is largely controlled by both cellular and viral components. In other words, viral gene expression is determined by the virus-host interaction. Generally, cells respond to viral infection in a defensive pattern; at the same time, viruses try to counteract the cellular defense or else hide in the host (latency). Viruses evolve effective strategies against cellular defense in order to achieve replicative success. Whether or not they are successful, cellular defenses remain in the whole viral replication cycle: entry, immediate-early (IE) gene expression, early gene expression, DNA replication, late gene expression, and viral egress. Many viral strategies against cellular defense, and which occur in the immediate-early time of viral infection, have been documented. In this review, we will summarize the documented biological functions of IE1 and pp71 proteins, especially with regard to how they counteract cellular intrinsic defenses.

This is a preview of subscription content, access via your institution.

References

  1. Adler M, Tavalai N, Muller R, Stamminger T. 2011. Human cytomegalovirus immediate-early gene expression is restricted by the nuclear domain 10 component Sp100. J Gen Virol, 92: 1532–1538.

    CAS  PubMed  Article  Google Scholar 

  2. Ahn J H, Hayward G S. 1997. The major immediate-early proteins IE1 and IE2 of human cytomegalovirus colocalize with and disrupt PML-associated nuclear bodies at very early times in infected permissive cells. J Virol, 71: 4599–4613.

    CAS  PubMed Central  PubMed  Google Scholar 

  3. Anderson K P, Fox M C, Brown-Driver V, Martin M J, Azad R F. 1996. Inhibition of human cytomegalovirus immediate-early gene expression by an antisense oligonucleotide complementary to immediate-early RNA. Antimicrob Agents Chemother, 40: 2004–2011.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Angulo A, Ghazal P. 1995. Regulation of human cytomegalovirus by retinoic acid. Scand J Infect Dis Suppl, 99: 113–115.

    CAS  PubMed  Google Scholar 

  5. Angulo A, Suto C, Heyman R A, Ghazal P. 1996. Characterization of the sequences of the human cytomegalovirus enhancer that mediate differential regulation by natural and synthetic retinoids. Mol Endocrinol, 10: 781–793.

    CAS  PubMed  Google Scholar 

  6. Angulo A, Messerle M, Koszinowski U H, Ghazal P. 1998. Enhancer requirement for murine cytomegalovirus growth and genetic complementation by the human cytomegalovirus enhancer. J Virol, 72: 8502–8509.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Angulo A, Kerry D, Huang H, Borst E M, Razinsky A, Wu J, Hobom U, Messerle M, Ghazal P. 2000. Identification of a boundary domain adjacent to the potent human cytomegalovirus enhancer that represses transcription of the divergent UL127 promoter. J Virol, 74: 2826–2839.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Baldick C J, Jr., Marchini A, Patterson C E, Shenk T. 1997. Human cytomegalovirus tegument protein pp71 (ppUL82) enhances the infectivity of viral DNA and accelerates the infectious cycle. J Virol, 71: 4400–4408.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Bresnahan W A, Shenk T E. 2000. UL82 virion protein activates expression of immediate early viral genes in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A, 97: 14506–14511.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Britt W J. 1996. Vaccines against human cytomegalovirus: time to test. Trends Microbiol, 4: 34–38.

    CAS  PubMed  Article  Google Scholar 

  11. Chau N H, Vanson C D, Kerry J A. 1999. Transcriptional regulation of the human cytomegalovirus US11 early gene. J Virol, 73: 863–870.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Chelbi-Alix M K, de The H. 1999. Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene, 18: 935–941.

    CAS  PubMed  Article  Google Scholar 

  13. Cherrington J M, Khoury E L, Mocarski E S. 1991. Human cytomegalovirus ie2 negatively regulates alpha gene expression via a short target sequence near the transcription start site. J Virol, 65: 887–896.

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Chou S, Marousek G, Guentzel S, Follansbee S E, Poscher M E, Lalezari J P, Miner R C, Drew W L. 1997. Evolution of mutations conferring multidrug resistance during prophylaxis and therapy for cytomegalovirus disease. J Infect Dis, 176: 786–789.

    CAS  PubMed  Article  Google Scholar 

  15. Cosme R C, Martinez F P, Tang Q. 2011. Functional interaction of nuclear domain 10 and its components with cytomegalovirus after infections: cross-species host cells versus native cells. PLoS One, 6: e19187.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. Cosme R S, Yamamura Y, Tang Q. 2009. Roles of polypyrimidine tract binding proteins in major immediate-early gene expression and viral replication of human cytomegalovirus. J Virol, 83: 2839–2850.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  17. Everett R D, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, Parkinson J. 1998. The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol, 72: 6581–6591.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Garcia-Ramirez J J, Ruchti F, Huang H, Simmen K, Angulo A, Ghazal P. 2001. Dominance of virus over host factors in cross-species activation of human cytomegalovirus early gene expression. J Virol, 75: 26–35.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Gawn J M, Greaves R F. 2002. Absence of IE1 p72 protein function during low-multiplicity infection by human cytomegalovirus results in a broad block to viral delayed-early gene expression. J Virol, 76: 4441–4455.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Greaves R F, Mocarski E S. 1998. Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus ie1 mutant. J Virol, 72: 366–379.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Gu H, Roizman B. 2003. The degradation of promyelocytic leukemia and Sp100 proteins by herpes simplex virus 1 is mediated by the ubiquitin-conjugating enzyme UbcH5a. Proc Natl Acad Sci U S A, 100: 8963–8968.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  22. Guenther M G, Barak O, Lazar M A. 2001. The SMRT and N-CoR corepressors are activating cofactors for histone deacetylase 3. Mol Cell Biol, 21: 6091–6101.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Guise A J, Budayeva H G, Diner B A, Cristea I M. 2013. Histone deacetylases in herpesvirus replication and virus-stimulated host defense. Viruses, 5: 1607–1632.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Hagemeier C, Walker S M, Sissons P J, Sinclair J H. 1992. The 72K IE1 and 80K IE2 proteins of human cytomegalovirus independently trans-activate the c-fos, c-myc and hsp70 promoters via basal promoter elements. J Gen Virol, 73: 2385–2393.

    CAS  PubMed  Article  Google Scholar 

  25. Henry S C, Schmader K, Brown T T, Miller S E, Howell D N, Daley G G, Hamilton J D. 2000. Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection. J Virol Methods, 89: 61–73.

    CAS  PubMed  Article  Google Scholar 

  26. Hensel G M, Meyer H H, Buchmann I, Pommerehne D, Schmolke S, Plachter B, Radsak K, Kern H F. 1996. Intracellular localization and expression of the human cytomegalovirus matrix phosphoprotein pp71 (ppUL82): evidence for its translocation into the nucleus. J Gen Virol, 77: 3087–3097.

    CAS  PubMed  Article  Google Scholar 

  27. Hofmann H, Sindre H, Stamminger T. 2002. Functional interaction between the pp71 protein of human cytomegalovirus and the PML-interacting protein human Daxx. J Virol, 76: 5769–5783.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Homer E G, Rinaldi A, Nicholl M J, Preston C M. 1999. Activation of herpesvirus gene expression by the human cytomegalovirus protein pp71. J Virol, 73: 8512–8518.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Ishov A M, Vladimirova O V, Maul G G. 2002. Daxx-mediated accumulation of human cytomegalovirus tegument protein pp71 at ND10 facilitates initiation of viral infection at these nuclear domains. J Virol, 76: 7705–7712.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. Ishov A M, Sotnikov A G, Negorev D, Vladimirova O V, Neff N, Kamitani T, Yeh E T, Strauss J F, 3rd, Maul G G. 1999. PML is critical for ND10 formation and recruits the PML-interacting protein Daxx to this nuclear structure when modified by SUMO-1. J Cell Biol, 147: 221–234.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  31. Jurak I, Brune W. 2006. Induction of apoptosis limits cytomegalovirus cross-species infection. EMBO J, 25: 2634–2642.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  32. Korioth F, Maul G G, Plachter B, Stamminger T, Frey J. 1996. The nuclear domain 10 (ND10) is disrupted by the human cytomegalovirus gene product IE1. Exp Cell Res, 229: 155–158.

    CAS  PubMed  Article  Google Scholar 

  33. Kurz S K, Reddehase M J. 1999. Patchwork pattern of transcriptional reactivation in the lungs indicates sequential checkpoints in the transition from murine cytomegalovirus latency to recurrence. J Virol, 73: 8612–8622.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Lafemina R L, Hayward G S. 1988. Differences in cell-type-specific blocks to immediate early gene expression and DNA rep lication of human, simian and murine cytomegalovirus. J Gen Virol, 69: 355–374.

    CAS  PubMed  Article  Google Scholar 

  35. Lashmit P E, Lundquist C A, Meier J L, Stinski M F. 2004. Cellular repressor inhibits human cytomegalovirus transcription from the UL127 promoter. J Virol, 78: 5113–5123.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  36. Lee H R, Ahn J H. 2004. Sumoylation of the major immediate-early IE2 protein of human cytomegalovirus Towne strain is not required for virus growth in cultured human fibroblasts. J Gen Virol, 85: 2149–2154.

    CAS  PubMed  Article  Google Scholar 

  37. Liu B, Stinski M F. 1992. Human cytomegalovirus contains a tegument protein that enhances transcription from promoters with upstream ATF and AP-1 cis-acting elements. J Virol, 66: 4434–4444.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Lundquist C A, Meier J L, Stinski M F. 1999. A strong negative transcriptional regulatory region between the human cytomegalovirus UL127 gene and the major immediate-early enhancer. J Virol, 73: 9039–9052.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Margolis M J, Pajovic S, Wong E L, Wade M, Jupp R, Nelson J A, Azizkhan J C. 1995. Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J Virol, 69: 7759–7767.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Martinez F P, Cruz R, Lu F, Plasschaert R, Deng Z, Rivera-Molina Y A, Bartolomei M S, Lieberman P M, Tang Q. 2014. CTCF Binding to the First Intron of the Major Immediate-Early (MIE) Gene of Human Cytomegalovirus (HCMV) Negatively Regulates MIE Gene Expression and HCMV Replication. J Virol, 88:7381–7401.

    Google Scholar 

  41. Meier J L. 2001. Reactivation of the human cytomegalovirus major immediate-early regulatory region and viral replication in embryonal NTera2 cells: role of trichostatin A, retinoic acid, and deletion of the 21-base-pair repeats and modulator. J Virol, 75: 1581–1593.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  42. Meier J L, Stinski M F. 1996. Regulation of human cytomegalovirus immediate-early gene expression. Intervirology, 39: 331–342.

    CAS  PubMed  Google Scholar 

  43. Meier J L, Pruessner J A. 2000. The human cytomegalovirus major immediate-early distal enhancer region is required for efficient viral replication and immediate-early gene expression. J Virol, 74: 1602–1613.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  44. Mocarski E S, Kemble G W, Lyle J M, Greaves R F. 1996. A deletion mutant in the human cytomegalovirus gene encoding IE1(491aa) is replication defective due to a failure in autoregulation. Proc Natl Acad Sci U S A, 93: 11321–11326.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  45. Mocarski E S, Jr., Shenk, T., Pass R. F. 2006. Cytomegaloviruses, 5th Edition ed. Lippincott Williams & Wilkins, Philadelphia, pp567–601.

    Google Scholar 

  46. Netterwald J, Yang S, Wang W, Ghanny S, Cody M, Soteropoulos P, Tian B, Dunn W, Liu F, Zhu H. 2005. Two gamma interferon-activated site-like elements in the human cytomegalovirus major immediate-early promoter/enhancer are important for viral replication. J Virol, 79: 5035–5046.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. Nevels M, Paulus C, Shenk T. 2004. Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A, 101: 17234–17239.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Perez K J, Martinez F P, Cosme-Cruz R, Perez-Crespo N M, Tang Q. 2013. A short cis-acting motif in the M112–113 promoter region is essential for IE3 to activate M112–113 gene expression and is important for murine cytomegalovirus replication. J Virol, 87: 2639–2647.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  49. Pizzorno M C, Hayward G S. 1990. The IE2 gene products of human cytomegalovirus specifically down-regulate expression from the major immediate-early promoter through a target sequence located near the cap site. J Virol, 64: 6154–6165.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ramsay M E, Miller E, Peckham C S. 1991. Outcome of confirmed symptomatic congenital cytomegalovirus infection. Arch Dis Child, 66: 1068–1069.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  51. Reddehase M J, Podlech J, Grzimek N K. 2002. Mouse models of cytomegalovirus latency: overview. J Clin Virol, 25Suppl 2: S23–S36.

    CAS  PubMed  Article  Google Scholar 

  52. Reddehase M J, Simon C O, Podlech J, Holtappels R. 2004. Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol, 65: 446–455.

    CAS  PubMed  Article  Google Scholar 

  53. Revello M G, Gerna G. 2002. Diagnosis and management of human cytomegalovirus infection in the mother, fetus, and newborn infant. Clin Microbiol Rev, 15: 680–715.

    PubMed Central  PubMed  Article  Google Scholar 

  54. Revello M G, Zavattoni M, Furione M, Lilleri D, Gorini G, Gerna G. 2002. Diagnosis and outcome of preconceptional and periconceptional primary human cytomegalovirus infections. J Infect Dis, 186: 553–557.

    PubMed  Article  Google Scholar 

  55. Rivera-Molina Y A, Martinez F P, Tang Q. 2013. Nuclear domain 10 of the viral aspect. World J Virol, 2: 110–122.

    PubMed Central  PubMed  Article  Google Scholar 

  56. Saffert R T, Kalejta R F. 2006c. Inactivating a cellular intrinsic immune defense mediated by Daxx is the mechanism through which the human cytomegalovirus pp71 protein stimulates viral immediate-early gene expression. J Virol, 80: 3863–3871.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. Saffert R T, Kalejta R F. 2008. Promyelocytic leukemia-nuclear body proteins: herpesvirus enemies, accomplices, or both?. Future Virol, 3: 265–277.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  58. Smith J A, Pari G S. 1995. Expression of human cytomegalovirus UL36 and UL37 genes is required for viral DNA replication. J Virol, 69: 1925–1931.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Stagno S, Pass R F, Cloud G, Britt W J, Henderson R E, Walton P D, Veren D A, Page F, Alford C A. 1986. Primary cytomegalovirus infection in pregnancy. Incidence, transmission to fetus, and clinical outcome. Jama, 256: 1904–1908.

    CAS  PubMed  Article  Google Scholar 

  60. Stinski M F, Isomura H. 2008. Role of the cytomegalovirus major immediate early enhancer in acute infection and reactivation from latency. Med Microbiol Immunol, 197: 223–231.

    PubMed  Article  Google Scholar 

  61. Tang Q, Maul G G. 2003. Mouse Cytomegalovirus Immediate-Early Protein 1 Binds with Host Cell Repressors To Relieve Suppressive Effects on Viral Transcription and Replication during Lytic Infection. J Virol, 77: 1357–1367.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  62. Tang Q, Maul G G. 2006a. Mouse cytomegalovirus crosses the species barrier with help from a few human cytomegalovirus proteins. J Virol, 80: 7510–7521.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. Tang Q, Maul G G. 2006b. Immediate early interactions and epigenetic defense mechanisms of cytomegaloviruses. In: Cytomegaloviruses: Molecular Biology and Immunology. Reddehase M J, Lemmermann N, eds. Wymondham: Caister Academic Press, pp230–268.

    Google Scholar 

  64. Tang Q, Murphy E A, Maul G G. 2006c. Experimental confirmation of global murine cytomegalovirus open reading frames by transcriptional detection and partial characterization of newly described gene products. J Virol, 80: 6873–6882.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  65. Tavalai N, Stamminger T. 2009. Interplay between Herpesvirus Infection and Host Defense by PML Nuclear Bodies. Viruses, 1: 1240–1264.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  66. Tavalai N, Papior P, Rechter S, Leis M, Stamminger T. 2006. Evidence for a role of the cellular ND10 protein PML in mediating intrinsic immunity against human cytomegalovirus infections. J Virol, 80: 8006–8018.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  67. Tavalai N, Adler M, Scherer M, Riedl Y, Stamminger T. 2011. Evidence for a dual antiviral role of the major nuclear domain 10 component Sp100 during the immediate-early and late phases of the human cytomegalovirus replication cycle. J Virol, 85: 9447–9458.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  68. Yang S, Netterwald J, Wang W, Zhu H. 2005. Characterization of the elements and proteins responsible for interferon-stimulated gene induction by human cytomegalovirus. J Virol, 79: 5027–5034.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiyi Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Torres, L., Tang, Q. Immediate-Early (IE) gene regulation of cytomegalovirus: IE1- and pp71-mediated viral strategies against cellular defenses. Virol. Sin. 29, 343–352 (2014). https://doi.org/10.1007/s12250-014-3532-9

Download citation

Keywords

  • cytomegalovirus (CMV)
  • major immediate early promoter (MIEP)
  • IE1
  • pp71
  • nuclear domain 10 (ND10)
  • intrinsic cellular defense
  • enhancer
  • virus-host interaction