Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Infection with the SARS-CoV-2 B.1.351 variant is lethal in aged BALB/c mice

09 March 2022

Fumihiko Yasui, Yusuke Matsumoto, … Michinori Kohara

A Comprehensive Review of Animal Models for Coronaviruses: SARS-CoV-2, SARS-CoV, and MERS-CoV

30 June 2020

Ashutosh Singh, Rahul Soloman Singh, … Bikash Medhi

Neurological manifestations of coronavirus infections, before and after COVID-19: a review of animal studies

02 November 2021

Atefeh Bakhtazad, Behzad Garmabi & Mohammad Taghi Joghataei

A comparative review of pathogenesis and host innate immunity evasion strategies among the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV)

07 March 2021

Rashed Noor

Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains

23 April 2020

Eriko Padron-Regalado

The viral distribution and pathological characteristics of BALB/c mice infected with highly pathogenic Influenza H7N9 virus

29 November 2021

Xiao-Xin Wu, Song-Jia Tang, … Lan-Juan Li

Molecular Insights into the Crosstalk Between Immune Inflammation Nexus and SARS-CoV-2 Virus

22 September 2021

Pritha Bose, Priyashree Sunita & Shakti P. Pattanayak

Long-Term Sequelae of COVID-19 in Experimental Mice

13 July 2022

Michael J. Paidas, Daniela S. Cosio, … Arumugam R. Jayakumar

SARS coronavirus 2: from genome to infectome

01 December 2020

Meghana Rastogi, Neha Pandey, … Sunit K. Singh

Download PDF
  • Research Article
  • Published: 22 December 2014

Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice

  • Zhangsheng Yang1,
  • Jun Du2,
  • Gang Chen1,
  • Jie Zhao1,
  • Xuanming Yang1,
  • Lishan Su3,
  • Genhong Cheng4 &
  • …
  • Hong Tang1 

Virologica Sinica volume 29, pages 393–402 (2014)Cite this article

  • 2212 Accesses

  • 31 Citations

  • 6 Altmetric

  • Metrics details

Abstract

It remains challenging to develop animal models of lung infection and severe pneumonia by severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome cornavirus (MERS-CoV) without high level of containment. This inevitably hinders understanding of virushost interaction and development of appropriate countermeasures. Here we report that intranasal inoculation of sublethal doses of murine coronavirus mouse hepatitis virus A-59 (MHV-A59), a hepatic and neuronal tropic coronavirus, can induce acute pneumonia and severe lung injuries in C57BL/6 mice. Inflammatory leukocyte infiltrations, hemorrhages and fibrosis of alveolar walls can be observed 2–11 days after MHV-A59 infection. This pathological manifestation is associated with dramatical elevation of tissue IP-10 and IFN-γ and moderate increase of TNF-α and IL-1β, but inability of anti-viral type I interferon response. These results suggest that intranasal infection of MHV-A59 would serve as a surrogate mouse model of acute respiratory distress syndrome by SARS-CoV and MERS-CoV infections.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  • Aparicio J L, Pena C, Retegui L A. 2011. Autoimmune hepatitis-like disease in C57BL/6 mice infected with mouse hepatitis virus A59. Int Immunopharmacol, 11: 1591–1598.

    Article  CAS  PubMed  Google Scholar 

  • Barthold S W, Smith A L. 1984. Mouse hepatitis virus strain—related patterns of tissue tropism in suckling mice. Arch Virol, 81: 103–112.

    Article  CAS  PubMed  Google Scholar 

  • Biddison W E, Cruikshank W W, Center D M, Pelfrey C M, Taub D D, Turner R V. 1998. CD8+ myelin peptide-specific T cells can chemoattract CD4+ myelin peptide-specific T cells: importance of IFN-inducible protein 10. J Immunol, 160: 444–448.

    CAS  PubMed  Google Scholar 

  • Chan J F, Li K S, To K K, Cheng V C, Chen H, Yuen K Y. 2012. Is the discovery of the novel human betacoronavirus 2c EMC/2012 (HCoV-EMC) the beginning of another SARS-like pandemic? J Infect, 65: 477–489.

    Article  PubMed  Google Scholar 

  • Chen J, Subbarao K. 2007. The Immunobiology of SARS. Annu Rev Immunol, 25: 443–472.

    Article  CAS  PubMed  Google Scholar 

  • Chesler D A, Reiss C S. 2002. The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev, 13: 441–454.

    Article  CAS  PubMed  Google Scholar 

  • Chu H, Zhou J, Wong B H, Li C, Cheng Z S, Lin X, Poon V K, Sun T, Lau C C, Chan J F, To K K, Chan K H, Lu L, Zheng B J, Yuen K Y. 2014. Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology, 454–455: 197–205.

    Article  PubMed  Google Scholar 

  • Coleman C M, Matthews K L, Goicochea L, Frieman M B. 2014. Wild-type and innate immune-deficient mice are not susceptible to the Middle East respiratory syndrome coronavirus. J Gen Virol, 95: 408–412.

    Article  CAS  PubMed  Google Scholar 

  • Coutelier J P, van der Logt J T, Heessen F W, Warnier G, Van Snick J. 1987. IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med, 165: 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Day C W, Baric R, Cai S X, Frieman M, Kumaki Y, Morrey J D, Smee D F, Barnard D L. 2009. A new mouse-adapted strain of SARS-CoV as a lethal model for evaluating antiviral agents in vitro and in vivo. Virology, 395: 210–222.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Albuquerque N, Baig E, Ma X, Zhang J, He W, Rowe A, Habal M, Liu M, Shalev I, Downey G P, Gorczynski R, Butany J, Leibowitz J, Weiss S R, McGilvray I D, Phillips M J, Fish E N, Levy G A. 2006. Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J Virol, 80: 10382–10394.

    Article  PubMed Central  PubMed  Google Scholar 

  • de Wit E, Prescott J, Baseler L, Bushmaker T, Thomas T, Lackemeyer M G, Martellaro C, Milne-Price S, Haddock E, Haagmans B L, Feldmann H, Munster V J. 2013. The Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamsters. PLoS One, 8: e69127.

    Article  PubMed Central  PubMed  Google Scholar 

  • DeAlbuquerque N, Baig E, Xuezhong M, Shalev I, Phillips M J, Habal M, Leibowitz J, McGilvray I, Butany J, Fish E, Levy G. 2006. Murine hepatitis virus strain 1 as a model for severe acute respiratory distress syndrome (SARS). Adv Exp Med Biol, 581: 373–378.

    Article  CAS  PubMed  Google Scholar 

  • Devitt E. 2013. Lack of small animal model hinders MERS coronavirus research. Nat Med, 19: 952.

    Article  CAS  PubMed  Google Scholar 

  • Doyle S, Vaidya S, O’Connell R, Dadgostar H, Dempsey P, Wu T, Rao G, Sun R, Haberland M, Modlin R, Cheng G. 2002. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity, 17: 251–263.

    Article  CAS  PubMed  Google Scholar 

  • Drosten C, Gunther S, Preiser W, van der Werf S, Brodt H R, Becker S, Rabenau H, Panning M, Kolesnikova L, Fouchier R A, Berger A, Burguiere A M, Cinatl J, Eickmann M, Escriou N, Grywna K, Kramme S, Manuguerra J C, Muller S, Rickerts V, Sturmer M, Vieth S, Klenk H D, Osterhaus A D, Schmitz H, Doerr H W. 2003. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med, 348: 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  • Falzarano D, de Wit E, Feldmann F, Rasmussen A L, Okumura A, Peng X, Thomas M J, van Doremalen N, Haddock E, Nagy L, LaCasse R, Liu T, Zhu J, McLellan J S, Scott D P, Katze M G, Feldmann H, Munster V J. 2014. Infection with MERS-CoV causes lethal pneumonia in the common marmoset. PLoS Pathog, 10: e1004250.

    Article  PubMed Central  PubMed  Google Scholar 

  • Farrar M A, Schreiber R D. 1993. The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol, 11: 571–611.

    Article  CAS  PubMed  Google Scholar 

  • Frieman M, Yount B, Agnihothram S, Page C, Donaldson E, Roberts A, Vogel L, Woodruff B, Scorpio D, Subbarao K, Baric R S. 2012. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J Virol, 86: 884–897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ge X Y, Li J L, Yang X L, Chmura A A, Zhu G, Epstein J H, Mazet J K, Hu B, Zhang W, Peng C, Zhang Y J, Luo C M, Tan B, Wang N, Zhu Y, Crameri G, Zhang S Y, Wang L F, Daszak P, Shi Z L. 2013. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503: 535–538.

    Article  CAS  PubMed  Google Scholar 

  • Godfraind C, Holmes K V, Coutelier J P. 1995. Thymus involution induced by mouse hepatitis virus A59 in BALB/c mice. J Virol, 69: 6541–6547.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gombold J L, Hingley S T, Weiss S R. 1993. Fusion-defective mutants of mouse hepatitis virus A59 contain a mutation in the spike protein cleavage signal. J Virol, 67: 4504–4512.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Graham R L, Donaldson E F, Baric R S. 2013. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol, 11: 836–848.

    Article  CAS  PubMed  Google Scholar 

  • He L, Ding Y, Zhang Q, Che X, He Y, Shen H, Wang H, Li Z, Zhao L, Geng J, Deng Y, Yang L, Li J, Cai J, Qiu L, Wen K, Xu X, Jiang S. 2006. Expression of elevated levels of pro-inflamatory cytokines in SARS-CoV-infected ACE2+ cells in SARS patients: relation to the acute lung injury and pathogenesis of SARS. J Pathol, 210: 288–297.

    Article  CAS  PubMed  Google Scholar 

  • Hemmila E, Turbide C, Olson M, Jothy S, Holmes K V, Beauchemin N. 2004. Ceacam1a-/- mice are completely resistant to infection by murine coronavirus mouse hepatitis virus A59. J Virol, 78: 10156–10165.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang K J, Su I J, Theron M, Wu Y C, Lai S K, Liu C C, Lei H Y. 2005. An interferon-gamma-related cytokine storm in SARS patients. J Med Virol, 75: 185–194.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Xu J, Zhou C, Wu Z, Zhong S, Liu J, Luo W, Chen T, Qin Q, Deng P. 2005. Characterization of cytokine/chemokine profiles of severe acute respiratory syndrome. Am J Respir Crit Care Med, 171: 850–857.

    Article  PubMed  Google Scholar 

  • Kim J C, Spence R A, Currier P F, Lu X, Denison M R. 1995. Coronavirus protein processing and RNA synthesis is inhibited by the cysteine proteinase inhibitor E64d. Virology, 208: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Kim K D, Zhao J, Auh S, Yang X, Du P, Tang H, Fu Y X. 2007. Adaptive immune cells temper initial innate responses. Nat Med, 13: 1248–1252.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ksiazek T G, Erdman D, Goldsmith C S, Zaki S R, Peret T, Emery S, Tong S, Urbani C, Comer J A, Lim W, Rollin P E, Dowell S F, Ling A E, Humphrey C D, Shieh W J, Guarner J, Paddock C D, Rota P, Fields B, DeRisi J, Yang J Y, Cox N, Hughes J M, LeDuc J W, Bellini W J, Anderson L J. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med, 348: 1953–1966.

    Article  CAS  PubMed  Google Scholar 

  • Lau S K, Lau C C, Chan K H, Li C P, Chen H, Jin D Y, Chan J F, Woo P C, Yuen K Y. 2013. Delayed induction of proinflamatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus: implications for pathogenesis and treatment. J Gen Virol, 94: 2679–2690.

    Article  CAS  PubMed  Google Scholar 

  • Lau S K, Woo P C, Li K S, Huang Y, Tsoi H W, Wong B H, Wong S S, Leung S Y, Chan K H, Yuen K Y. 2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci U S A, 102: 14040–14045.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lavi E, Gilden D H, Highkin M K, Weiss S R. 1986. The organ tropism of mouse hepatitis virus A59 in mice is dependent on dose and route of inoculation. Lab Anim Sci, 36: 130–135.

    CAS  PubMed  Google Scholar 

  • Lavi E, Gilden D H, Wroblewska Z, Rorke L B, Weiss S R. 1984. Experimental demyelination produced by the A59 strain of mouse hepatitis virus. Neurology, 34: 597–603.

    Article  CAS  PubMed  Google Scholar 

  • Leibowitz J L, Srinivasa R, Williamson S T, Chua M M, Liu M, Wu S, Kang H, Ma X Z, Zhang J, Shalev I, Smith R, Phillips M J, Levy G A, Weiss S R. 2010. Genetic determinants of mouse hepatitis virus strain 1 pneumovirulence. J Virol, 84: 9278–9291.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li W, Shi Z, Yu M, Ren W, Smith C, Epstein J H, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton B T, Zhang S, Wang L F. 2005. Bats are natural reservoirs of SARS-like coronaviruses. Science, 310: 676–679.

    Article  CAS  PubMed  Google Scholar 

  • Loetscher M, Gerber B, Loetscher P, Jones S A, Piali L, Clark-Lewis I, Baggiolini M, Moser B. 1996. Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes. J Exp Med, 184: 963–969.

    Article  CAS  PubMed  Google Scholar 

  • Ma X Z, Bartczak A, Zhang J, Khattar R, Chen L, Liu M F, Edwards A, Levy G, McGilvray I D. 2010. Proteasome inhibition in vivo promotes survival in a lethal murine model of severe acute respiratory syndrome. J Virol, 84: 12419–12428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marten N W, Stohlman S A, Bergmann C C. 2001. MHV infection of the CNS: mechanisms of immune-mediated control. Viral Immunol, 14: 1–18.

    Article  CAS  PubMed  Google Scholar 

  • McCray P B Jr., Pewe L, Wohlford-Lenane C, Hickey M, Manzel L, Shi L, Netland J, Jia H P, Halabi C, Sigmund C D, Meyerholz D K, Kirby P, Look D C, Perlman S. 2007. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol, 81: 813–821.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meduri G U, Kohler G, Headley S, Tolley E, Stentz F, Postlethwaite A. 1995. Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest, 108: 1303–1314.

    Article  CAS  PubMed  Google Scholar 

  • Meduri G U, Headley S, Kohler G, Stentz F, Tolley E, Umberger R, Leeper K. 1995. Persistent elevation of inflammatory cytokines predicts a poor outcome in ARDS. Plasma IL-1 beta and IL-6 levels are consistent and efficient predictors of outcome over time. Chest, 107: 1062–1073.

    Article  CAS  PubMed  Google Scholar 

  • Munster V J, de Wit E, Feldmann H. 2013. Pneumonia from human coronavirus in a macaque model. N Engl J Med, 368: 1560–1562.

    Article  CAS  PubMed  Google Scholar 

  • Nicholls J M, Poon L L, Lee K C, Ng W F, Lai S T, Leung C Y, Chu C M, Hui P K, Mak K L, Lim W, Yan K W, Chan K H, Tsang N C, Guan Y, Yuen K Y, Peiris J S. 2003. Lung pathology of fatal severe acute respiratory syndrome. Lancet, 361: 1773–1778.

    Article  PubMed  Google Scholar 

  • Osterhaus A D, Fouchier R A, Kuiken T. 2004. The aetiology of SARS: Koch’s postulates fulfilled. Philos Trans R Soc Lond B Biol Sci, 359: 1081–1082.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parra B, Hinton D R, Marten N W, Bergmann C C, Lin M T, Yang C S, Stohlman S A. 1999. IFN-gamma is required for viral clearance from central nervous system oligodendroglia. J Immunol, 162: 1641–1647.

    CAS  PubMed  Google Scholar 

  • Peiris J S, Lai S T, Poon L L, Guan Y, Yam L Y, Lim W, Nicholls J, Yee W K, Yan W W, Cheung M T, Cheng V C, Chan K H, Tsang D N, Yung R W, Ng T K, Yuen K Y. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 361: 1319–1325.

    Article  CAS  PubMed  Google Scholar 

  • Reghunathan R, Jayapal M, Hsu L Y, Chng H H, Tai D, Leung B P, Melendez A J. 2005. Expression profile of immune response genes in patients with Severe Acute Respiratory Syndrome. BMC Immunol, 6: 2.

    Article  PubMed Central  PubMed  Google Scholar 

  • Roberts A, Deming D, Paddock C D, Cheng A, Yount B, Vogel L, Herman B D, Sheahan T, Heise M, Genrich G L, Zaki S R, Baric R, Subbarao K. 2007. A mouse-adapted SARS-coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog, 3: e5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruby J, Ramshaw I. 1991. The antiviral activity of immune CD8+ T cells is dependent on interferon-gamma. Lymphokine Cytokine Res, 10: 353–358.

    CAS  PubMed  Google Scholar 

  • Schaad M C, Stohlman S A, Egbert J, Lum K, Fu K, Wei T Jr., Baric R S. 1990. Genetics of mouse hepatitis virus transcription: identification of cistrons which may function in positive and negative strand RNA synthesis. Virology, 177: 634–645.

    Article  CAS  PubMed  Google Scholar 

  • Schijns V E, Haagmans B L, Wierda C M, Kruithof B, Heijnen I A, Alber G, Horzinek M C. 1998. Mice lacking IL-12 develop polarized Th1 cells during viral infection. J Immunol, 160: 3958–3964.

    CAS  PubMed  Google Scholar 

  • Snijder E J, Bredenbeek P J, Dobbe J C, Thiel V, Ziebuhr J, Poon L L, Guan Y, Rozanov M, Spaan W J, Gorbalenya A E. 2003. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol, 331: 991–1004.

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Chen G, Zheng D, Cheng G, Tang H. 2011. PLP2 of mouse hepatitis virus A59 (MHV-A59) targets TBK1 to negatively regulate cellular type I interferon signaling pathway. PLoS One, 6: e17192.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ward S E, Loutfy M R, Blatt L M, Siminovitch K A, Chen J, Hinek A, Wolff B, Pham D H, Deif H, LaMere E A, Kain K C, Farcas G A, Ferguson P, Latchford M, Levy G, Fung L, Dennis J W, Lai E K, Fish E N. 2005. Dynamic changes in clinical features and cytokine/chemokine responses in SARS patients treated with interferon alfacon-1 plus corticosteroids. Antivir Ther, 10: 263–275.

    CAS  PubMed  Google Scholar 

  • Weiss S R, Navas-Martin S. 2005. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coro-navirus. Microbiol Mol Biol Rev, 69: 635–664.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zaki A M, van Boheemen S, Bestebroer T M, Osterhaus A D, Fouchier R A. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med, 367: 1814–1820.

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Kim K D, Yang X, Auh S, Fu Y X, Tang H. 2008. Hyper innate responses in neonates lead to increased morbidity and mortality after infection. Proc Natl Acad Sci U S A, 105: 7528–7533.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao J, Li K, Wohlford-Lenane C, Agnihothram S S, Fett C, Gale M J Jr., Baric R S, Enjuanes L, Gallagher T, McCray P B Jr., Perlman S. 2014. Rapid generation of a mouse model for Middle East respiratory syndrome. Proc Natl Acad Sci U S A, 111: 4970–4975.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng D, Chen G, Guo B, Cheng G, Tang H. 2008. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res, 18: 1105–1113.

    CAS  PubMed  Google Scholar 

  • Zhou J, Chu H, Li C, Wong B H, Cheng Z S, Poon V K, Sun T, Lau C C, Wong K K, Chan J Y, Chan J F, To K K, Chan K H, Zheng B J, Yuen K Y. 2014. Active replication of Middle East respiratory syndrome coronavirus and aberrant induction of in-flammatory cytokines and chemokines in human macrophages: implications for pathogenesis. J Infect Dis, 209: 1331–1342.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Key Laboratory of Infection and Immunity (CASKLII), Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China

    Zhangsheng Yang, Gang Chen, Jie Zhao, Xuanming Yang & Hong Tang

  2. Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China

    Jun Du

  3. Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, 27599-7295, USA

    Lishan Su

  4. Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA

    Genhong Cheng

Authors
  1. Zhangsheng Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Jun Du
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Gang Chen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Jie Zhao
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Xuanming Yang
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Lishan Su
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Genhong Cheng
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Hong Tang
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hong Tang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Du, J., Chen, G. et al. Coronavirus MHV-A59 infects the lung and causes severe pneumonia in C57BL/6 mice. Virol. Sin. 29, 393–402 (2014). https://doi.org/10.1007/s12250-014-3530-y

Download citation

  • Received: 02 November 2014

  • Accepted: 10 December 2014

  • Published: 22 December 2014

  • Issue Date: December 2014

  • DOI: https://doi.org/10.1007/s12250-014-3530-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • coronavirus
  • MHV-A59
  • pneumonia
  • inflammation
  • cytokine
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.24.215

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.