Virologica Sinica

, Volume 29, Issue 5, pp 265–273 | Cite as

Varicella zoster virus vaccines: potential complications and possible improvements

  • Benjamin Silver
  • Hua Zhu


Varicella zoster virus (VZV) is the causative agent of varicella (chicken pox) and herpes zoster (shingles). After primary infection, the virus remains latent in sensory ganglia, and reactivates upon weakening of the cellular immune system due to various conditions, erupting from sensory neurons and infecting the corresponding skin tissue. The current varicella vaccine (v-Oka) is highly attenuated in the skin, yet retains its neurovirulence and may reactivate and damage sensory neurons. The reactivation is sometimes associated with postherpetic neuralgia (PHN), a severe pain along the affected sensory nerves that can linger for years, even after the herpetic rash resolves. In addition to the older population that develops a secondary infection resulting in herpes zoster, childhood breakthrough herpes zoster affects a small population of vaccinated children. There is a great need for a neuro-attenuated vaccine that would prevent not only the varicella manifestation, but, more importantly, any establishment of latency, and therefore herpes zoster. The development of a genetically-defined live-attenuated VZV vaccine that prevents neuronal and latent infection, in addition to primary varicella, is imperative for eventual eradication of VZV, and, if fully understood, has vast implications for many related herpesviruses and other viruses with similar pathogenic mechanisms.


varicella zoster virus herpesvirus vaccine neurovirulence neuro-attenuation latency latent infection herpes zoster shingles chicken pox ORF7 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abendroth A, Arvin A. 1999. Varicella-zoster virus immune evasion. Immunological reviews, 168: 143–156.PubMedCrossRefGoogle Scholar
  2. Arvin A M. 1995. Aspects of the host response to varicella-zoster virus: a review of recent observations. Neurology, 45: S36–37.PubMedCrossRefGoogle Scholar
  3. Arvin A M. 2001. Varicella-zoster virus: molecular virology and virus-host interactions. Curr Opin Microbiol, 4: 442–449.PubMedCrossRefGoogle Scholar
  4. Chesnut G, McClain D, Galeckas K. 2012. Varicella-zoster virus in children immunized with the varicella vaccine. Cutis, 90: 114–116.PubMedGoogle Scholar
  5. Choo P W, Donahue J G, Manson J E, Platt R. 1995. The epide-miology of varicella and its complications. J Infect Dis, 172: 706–712.PubMedCrossRefGoogle Scholar
  6. Cohen J I, Seidel K E. 1993. Generation of varicella-zoster virus (VZV) and viral mutants from cosmid DNAs: VZV thymidylate synthetase is not essential for replication in vitro. Proc Natl Acad Sci U S A, 90: 7376–7380.PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cole N L, Grose C. 2003. Membrane fusion mediated by herpesvirus glycoproteins: the paradigm of varicella-zoster virus. Rev Med Virol, 13: 207–222.PubMedCrossRefGoogle Scholar
  8. Collaco A M, Rahman S, Dougherty E J, Williams B B, Geusz M E. 2005. Circadian regulation of a viral gene promoter in live transgenic mice expressing firefly luciferase. Mol Imaging Biol, 7: 342–350.PubMedCrossRefGoogle Scholar
  9. Contag C H, Bachmann M H. 2002. Advances in in vivo bioluminescence imaging of gene expression. Annu Rev Biomed Eng, 4: 235–260.PubMedCrossRefGoogle Scholar
  10. Contag C H, Spilman S D, Contag P R, Oshiro M, Eames B, Dennery P, Stevenson D K, Benaron D A. 1997. Visualizing gene expression in living mammals using a bioluminescent reporter. Photochem Photobiol, 66: 523–531.PubMedCrossRefGoogle Scholar
  11. Doyle T C, Burns S M, Contag C H. 2004. In vivo bioluminescence imaging for integrated studies of infection. Cell Microbiol, 6: 303–317.PubMedCrossRefGoogle Scholar
  12. Drolet M, Brisson M, Schmader K E, Levin M J, Johnson R, Oxman M N, Patrick D, Blanchette C, Mansi J A. 2010. The impact of herpes zoster and postherpetic neuralgia on healthrelated quality of life: a prospective study. CMAJ: Canadian Medical Association journal = journal de l’Association medicale canadienne, 182: 1731–1736.CrossRefGoogle Scholar
  13. Dulal K, Zhang Z, Zhu H. 2009. Development of a gene capture method to rescue a large deletion mutant of human cytomegalovirus. Journal of Virological Methods, 157: 180–187.PubMedCrossRefGoogle Scholar
  14. Dulal K, Silver B, Zhu H. 2012. Use of Recombination-Mediated Genetic Engineering for Construction of Rescue Human Cytomegalovirus Bacterial Artificial Chromosome Clones. Biomed and Biotechnol.Google Scholar
  15. Fan S, Maguire C A, Ramirez S H, Bradel-Tretheway B, Sapinoro R, Sui Z, Chakraborty-Sett S, Dewhurst S. 2005. Valproic acid enhances gene expression from viral gene transfer vectors. J Virol Methods, 125: 23–33.PubMedCrossRefGoogle Scholar
  16. Gershon M D, Gershon A A. 2010. VZV infection of keratinocytes: production of cell-free infectious virions in vivo. Curr Top Microbiol Immunol, 342: 173–188.PubMedGoogle Scholar
  17. Gilden D H, Kleinschmidt-DeMasters B K, LaGuardia J J, Mahalingam R, Cohrs R J. 2000. Neurologic complications of the reactivation of varicella-zoster virus. N Engl J Med, 342: 635–645.PubMedCrossRefGoogle Scholar
  18. Harnisch J P. 1984. Zoster in the elderly: clinical, immunologic and therapeutic considerations. J Am Geriatr Soc, 32: 789–793.PubMedGoogle Scholar
  19. Hastings J W. 1983. Biological diversity, chemical mechanisms, and the evolutionary origins of bioluminescent systems. J Mol Evol, 19: 309–321.PubMedCrossRefGoogle Scholar
  20. Hatchette T, Tipples G A, Peters G, Alsuwaidi A, Zhou J, Mailman T L. 2008. Foscarnet salvage therapy for acyclovir-resistant varicella zoster: report of a novel thymidine kinase mutation and review of the literature. Pediatr Infect Dis J, 27: 75–77.PubMedCrossRefGoogle Scholar
  21. Kimberlin D W, Whitley R J. 2007. Varicella-zoster vaccine for the prevention of herpes zoster. N Engl J Med, 356: 1338–1343.PubMedCrossRefGoogle Scholar
  22. Klassen T P, Hartling L, Wiebe N, Belseck E M. 2005. Acyclovir for treating varicella in otherwise healthy children and adolescents. Cochrane Database Syst Rev: CD002980.Google Scholar
  23. Kurfurst M, Ghisla S, Hastings J W. 1983. Bioluminescence emission from the reaction of luciferase-flavin mononucleotide radical with O2. Biochemistry, 22: 1521–1525.PubMedCrossRefGoogle Scholar
  24. Leung J, Harpaz R, Molinari N A, Jumaan A, Zhou F. 2011. Herpes zoster incidence among insured persons in the United States, 1993–2006: evaluation of impact of varicella vaccination. Clin Infect Dis, 52: 332–340.PubMedCrossRefGoogle Scholar
  25. Liesegang T J. 2004. Herpes zoster virus infection. Curr Opin Ophthalmol, 15: 531–536.PubMedCrossRefGoogle Scholar
  26. Lydick E, Epstein R S, Himmelberger D, White C J. 1995. Herpes zoster and quality of life: a self-limited disease with severe impact. Neurology, 45: S52–53.PubMedCrossRefGoogle Scholar
  27. Nagaike K, Mori Y, Gomi Y, Yoshii H, Takahashi M, Wagner M, Koszinowski U, Yamanishi K. 2004. Cloning of the varicellazoster virus genome as an infectious bacterial artificial chromosome in Escherichia coli. Vaccine, 22: 4069–4074.PubMedCrossRefGoogle Scholar
  28. Niizuma T, Zerboni L, Sommer M H, Ito H, Hinchliffe S, Arvin A M. 2003. Construction of varicella-zoster virus recombinants from parent Oka cosmids and demonstration that ORF65 protein is dispensable for infection of human skin and T cells in the SCID-hu mouse model. J Virol, 77: 6062–6065.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Opstelten W, Mauritz J W, de Wit N J, van Wijck A J, Stalman W A, van Essen G A. 2002. Herpes zoster and postherpetic neuralgia: incidence and risk indicators using a general practice research database. Fam Pract, 19: 471–475.PubMedCrossRefGoogle Scholar
  30. Rehemtulla A, Stegman L D, Cardozo S J, Gupta S, Hall D E, Contag C H, Ross B D. 2000. Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging. Neoplasia, 2: 491–495.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Reichelt M, Zerboni L, Arvin A M. 2008. Mechanisms of varicellazoster virus neuropathogenesis in human dorsal root ganglia. J Virol, 82: 3971–3983.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Saksena M M, Wakisaka H, Tijono B, Boadle R A, Rixon F, Takahashi H, Cunningham A L. 2006. Herpes simplex virus type 1 accumulation, envelopment, and exit in growth cones and varicosities in mid-distal regions of axons. J Virol, 80: 3592–3606.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Uebe B, Sauerbrei A, Burdach S, Horneff G. 2002. Herpes zoster by reactivated vaccine varicella zoster virus in a healthy child. Eur J Pediatr, 161: 442–444.PubMedCrossRefGoogle Scholar
  34. Vazquez M. 2004. Varicella zoster virus infections in children after the introduction of live attenuated varicella vaccine. Curr Opin Pediatr, 16: 80–84.PubMedCrossRefGoogle Scholar
  35. Warden C, Tang Q, Zhu H. 2011. Herpesvirus BACs: past, present, and future. J Biomed Biotechnol, 2011: 124595.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Warming S, Costantino N, Court D L, Jenkins N A, Copeland N G. 2005. Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res, 33: e36.PubMedCrossRefPubMedCentralGoogle Scholar
  37. White M R, Masuko M, Amet L, Elliott G, Braddock M, Kingsman A J, Kingsman S M. 1995. Real-time analysis of the transcriptional regulation of HIV and hCMV promoters in single mammalian cells. J Cell Sci, 108( Pt 2): 441–455.PubMedGoogle Scholar
  38. Whitley R J. 2005. Changing dynamics of varicella-zoster virus infections in the 21st century: the impact of vaccination. J Infect Dis, 191: 1999–2001.PubMedCrossRefGoogle Scholar
  39. Yih W K, Brooks D R, Lett S M, Jumaan A O, Zhang Z, Clements K M, Seward J F. 2005. The incidence of varicella and herpes zoster in Massachusetts as measured by the Behavioral Risk Factor Surveillance System (BRFSS) during a period of increasing varicella vaccine coverage, 1998–2003. BMC Public Health, 5: 68.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Zerboni L, Arvin A. 2011. Investigation of varicella-zoster virus neurotropism and neurovirulence using SCID mouse-human DRG xenografts. J Neurovirol, 17: 570–577.PubMedCrossRefGoogle Scholar
  41. Zerboni L, Reichelt M, Arvin A. 2010. Varicella-zoster virus neurotropism in SCID mouse-human dorsal root ganglia xenografts. Curr Top Microbiol Immunol, 342: 255–276.PubMedGoogle Scholar
  42. Zhang Y, Muyrers J P, Testa G, Stewart A F. 2000. DNA cloning by homologous recombination in Escherichia coli. Nat Biotechnol, 18: 1314–1317.PubMedCrossRefGoogle Scholar
  43. Zhang Z, Huang Y, Zhu H. 2008. A highly efficient protocol of generating and analyzing VZV ORF deletion mutants based on a newly developed luciferase VZV BAC system. J Virol Methods, 148: 197–204.PubMedCrossRefPubMedCentralGoogle Scholar
  44. Zhang Z, Rowe J, Wang W, Sommer M, Arvin A, Moffat J, Zhu H. 2007. Genetic analysis of varicella-zoster virus ORF0 to ORF4 by use of a novel luciferase bacterial artificial chromosome system. J Virol, 81: 9024–9033.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Zhang Z, Selariu A, Warden C, Huang G, Huang Y, Zaccheus O, Cheng T, Xia N, Zhu H. 2010. Genome-wide mutagenesis reveals that ORF7 is a novel VZV skin-tropic factor. PLoS pathogens, 6: e1000971.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Microbiology, Biochemistry & Molecular GeneticsRutgers - New Jersey Medical SchoolNewarkUSA

Personalised recommendations