Virologica Sinica

, Volume 29, Issue 3, pp 139–147 | Cite as

Viral exploitation of actin: force-generation and scaffolding functions in viral infection

Review

Abstract

As a fundamental component of the host cellular cytoskeleton, actin is routinely engaged by infecting viruses. Furthermore, viruses from diverse groups, and infecting diverse hosts, have convergently evolved an array of mechanisms for manipulating the actin cytoskeleton for efficacious infection. An ongoing chorus of research now indicates that the actin cytoskeleton is critical for viral replication at many stages of the viral life cycle, including binding, entry, nuclear localization, genomic transcription and reverse transcription, assembly, and egress/dissemination. Specifically, viruses subvert the force-generating and macromolecular scaffolding properties of the actin cytoskeleton to propel viral surfing, internalization, and migration within the cell. Additionally, viruses utilize the actin cytoskeleton to support and organize assembly sites, and eject budding virions for cell-to-cell transmission. It is the purpose of this review to provide an overview of current research, focusing on the various mechanisms and themes of virus-mediated actin modulation described therein.

Keywords

viral infection actin cytoskeleton cofilin LIMK Arp2/3 GTPase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal A, Iemma T L, Shih I, Newsome T P, McAllery S, Cunningham A L, Turville S G. 2012. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLoS Pathog, 8: e1002762.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Agosto L M, Zhong P, Munro J, Mothes W. 2014. Highly Active Antiretroviral Therapies Are Effective against HIV-1 Cell-to-Cell Transmission. PLoS Pathog, 10: e1003982.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alvarez D E, Agaisse H. 2012. Casein kinase 2 regulates vaccinia virus actin tail formation. Virology, 423: 143–151.PubMedCrossRefGoogle Scholar
  4. Alvarez D E, Agaisse H. 2013. The formin FHOD1 and the small GTPase Rac1 promote vaccinia virus actin-based motility. J Cell Biol, 202: 1075–1090.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barrero-Villar M, Cabrero J R, Gordón-Alonso M, Barroso-González J, Alvarez-Losada S, Muñoz-Fernández M A, Sánchez-Madrid F, Valenzuela-Fernández A. 2009. Moesin is required for HIV-1-induced CD4-CXCR4 interaction, F-actin redistribution, membrane fusion and viral infection in lymphocytes. J Cell Sci, 122: 103–113.PubMedCrossRefGoogle Scholar
  6. Bohn W, Rutter G, Hohenberg H, Mannweiler K, Nobis P. 1986. Involvement of actin filaments in budding of measles virus: studies on cytoskeletons of infected cells. Virology, 149: 91–106.PubMedCrossRefGoogle Scholar
  7. Brandenburg B, Lee L Y, Lakadamyali M, Rust M J, Zhuang X, Hogle J M. 2007. Imaging poliovirus entry in live cells. PLoS Biol, 5: e183.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bukrinskaya A, Brichacek B, Mann A, Stevenson M. 1998. Establishment of a functional human immunodeficiency virus type 1 (HIV-1) reverse transcription complex involves the cytoskeleton. J Exp Med, 188: 2113–2125.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cameron P U, Saleh S, Sallmann G, Solomon A, Wightman F, Evans V A, Boucher G, Haddad E K, Sekaly R-P, Harman A N, Anderson J L, Jones K L, Mak J, Cunningham A L, Jaworowski A, Lewin S R. 2010. Establishment of HIV-1 latency in resting CD4+ T cells depends on chemokine-induced changes in the actin cytoskeleton. Proc Natl Acad Sci U S A, 107: 16934–16939.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Carter G C, Bernstone L, Baskaran D, James W. 2011. HIV-1 infects macrophages by exploiting an endocytic route dependent on dynamin, Rac1 and Pak1. Virology, 409: 234–250.PubMedCrossRefGoogle Scholar
  11. Chen P, Hübner W, Spinelli M A, Chen B K. 2007. Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol, 81: 12582–12595.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Clement C, Tiwari V, Scanlan P M, Valyi-Nagy T, Yue B Y, Shukla D. 2006. A novel role for phagocytosis-like uptake in herpes simplex virus entry. J Cell Biol, 174: 1009–1021.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Coller K E, Berger K L, Heaton N S, Cooper J D, Yoon R, Randall G. 2009. RNA interference and single particle tracking analysis of hepatitis C virus endocytosis. PLoS Pathog, 5: e1000702.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Cudmore S, Cossart P, Griffiths G, Way M. 1995. Actin-based motility of vaccinia virus. Nature, 378: 636–638.PubMedCrossRefGoogle Scholar
  15. Dierkes R, Warnking K, Liedmann S, Seyer R, Ludwig S, Ehrhardt C. 2014. The Rac1 inhibitor NSC23766 exerts anti-influenza virus properties by affecting the viral polymerase complex activity. PloS One, 9: e88520.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Dietzel E, Kolesnikova L, Maisner A. 2013. Actin filaments disruption and stabilization affect measles virus maturation by different mechanisms. Virol J, 10: 249.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dixit R, Tiwari V, Shukla D. 2008. Herpes simplex virus type 1 induces filopodia in differentiated P19 neural cells to facilitate viral spread. Neurosci Lett, 440: 113–118.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Frischknecht F, Cudmore S, Moreau V, Reckmann I, Röttger S, Way M. 1999a. Tyrosine phosphorylation is required for ac tin-based motility of vaccinia but not Listeria or Shigella. Curr Biol, 9: 89–92.PubMedCrossRefGoogle Scholar
  19. Frischknecht F, Moreau V, Röttger S, Gonfloni S, Reckmann I, Superti-Furga G, Way M. 1999b. Actin-based motility of vaccinia virus mimics receptor tyrosine kinase signaling. Nature, 401: 926–929.PubMedCrossRefGoogle Scholar
  20. Gao Y, Dickerson J B, Guo F, Zheng J, Zheng Y. 2004. Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A, 101: 7618–7623.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Goley E D, Ohkawa T, Mancuso J, Woodruff J B, D’Alessio J A, Cande W Z, Volkman L E, Welch M D. 2006. Dynamic Nuclear Actin Assembly by Arp2/3 Complex and a Baculovirus WASPLike Protein. Science, 314: 464–467.PubMedCrossRefGoogle Scholar
  22. Harmon B, Campbell N, Ratner L. 2010. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLoS Pathog, 6: e1000956.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Harmon B, Ratner L. 2008. Induction of the Galpha(q) signaling cascade by the human immunodeficiency virus envelope is required for virus entry. J Virol, 82: 9191–9205.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Harries P A, Park J-W, Sasaki N, Ballard K D, Maule A J, Nelson R S. 2009. Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci U S A, 106: 17594–17599.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Higgs H N, Pollard T D. 1999. Regulation of actin polymerization by Arp2/3 complex and WASp/Scar proteins. J Biol Chem, 274: 32531–32534.PubMedCrossRefGoogle Scholar
  26. Higgs H N, Pollard T D. 2001. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu Rev Biochem, 70: 649–676.PubMedCrossRefGoogle Scholar
  27. Hiller G, Jungwirth C, Weber K. 1981. Fluorescence microscopical analysis of the life cycle of vaccinia virus in chick embryo fibroblasts. Virus-cytoskeleton interactions. Exp Cell Res, 132: 81–87.Google Scholar
  28. Hiller G, Weber K, Schneider L, Parajsz C, Jungwirth C. 1979. Interaction of assembled progeny pox viruses with the cellular cytoskeleton. Virology, 98: 142–153.PubMedCrossRefGoogle Scholar
  29. Hottiger M, Gramatikoff K, Georgiev O, Chaponnier C, Schaffner W, Hübscher U. 1995. The large subunit of HIV-1 reverse transcriptase interacts with beta-actin. Nucleic Acids Res, 23: 736–741.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Huttunen M, Waris M, Kajander R, Hyypiä T, Marjomäki V. 2014. Coxsackievirus A9 infects cells via nonacidic multivesicular bodies. J Virol, 88: 5138–5151.PubMedCrossRefGoogle Scholar
  31. Jiménez-Baranda S, Gómez-Moutón C, Rojas A, Martínez-Prats L, Mira E, Ana Lacalle R, Valencia A, Dimitrov DS, Viola A, Delgado R, Martínez-A C, Mañes S. 2007. Filamin-A regulates actin-dependent clustering of HIV receptors. Nat Cell Biol, 9: 838–846.PubMedCrossRefGoogle Scholar
  32. Jolly C, Kashefi K, Hollinshead M, Sattentau Q J. 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med, 199: 283–293.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Jolly C, Mitar I, Sattentau Q J. 2007. Requirement for an intact T-cell actin and tubulin cytoskeleton for efficient assembly and spread of human immunodeficiency virus type 1. J Virol, 81: 5547–5560.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Kimura T, Hashimoto I, Yamamoto A, Nishikawa M, Fujisawa J I. 2000. Rev-dependent association of the intron-containing HIV-1 gag mRNA with the nuclear actin bundles and the inhibition of its nucleocytoplasmic transport by latrunculin-B. Genes Cells Devoted Mol Cell Mech, 5: 289–307.CrossRefGoogle Scholar
  35. Krempien U, Schneider L, Hiller G, Weber K, Katz E, Jungwirth C. 1981. Conditions for pox virus-specific microvilli formation studied during synchronized virus assembly. Virology, 113: 556–564.PubMedCrossRefGoogle Scholar
  36. Lehmann M J, Sherer N M, Marks C B, Pypaert M, Mothes W. 2005. Actin-and myosin-driven movement of viruses along filopodia precedes their entry into cells. J Cell Biol, 170: 317–325.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Machesky L M, Insall R H. 2001. WASP homology sequences in baculoviruses. Trends Cell Biol, 11: 286–287.PubMedCrossRefGoogle Scholar
  38. Mercer J, Helenius A. 2008. Vaccinia virus uses macropinocytosis and apoptotic mimicry to enter host cells. Science, 320: 531–535.PubMedCrossRefGoogle Scholar
  39. Moss B. 2012. Poxvirus cell entry: how many proteins does it take? Viruses, 4: 688–707.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Moreau V, Frischknecht F, Reckmann I, Vincentelli R, Rabut G, Stewart D, Way M. 2000. A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat Cell Biol, 2: 441–448.PubMedCrossRefGoogle Scholar
  41. Nolen B J, Tomasevic N, Russell A, Pierce D W, Jia Z, McCormick C D, Hartman J, Sakowicz R, Pollard T D. 2009. Characterization of two classes of small molecule inhibitors of Arp2/3 complex. Nature, 460: 1031–1034.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Ohkawa T, Volkman L E, Welch M D. 2010. Actin-based motility drives baculovirus transit to the nucleus and cell surface. J Cell Biol, 190: 187–195.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Ohkawa T, Volkman L E. 1999. Nuclear F-Actin Is Required for AcMNPV Nucleocapsid Morphogenesis. Virology, 264: 1–4.PubMedCrossRefGoogle Scholar
  44. Pollard T D, Borisy G G. 2003. Cellular motility driven by assembly and disassembly of actin filaments. Cell, 112: 453–465.PubMedCrossRefGoogle Scholar
  45. Roberts P C, Compans R W. 1998. Host cell dependence of viral morphology. Proc Natl Acad Sci U S A, 95: 5746–5751.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Röttger S, Frischknecht F, Reckmann I, Smith G L, Way M. 1999. Interactions between vaccinia virus IEV membrane proteins and their roles in IEV assembly and actin tail formation. J Virol, 73: 2863–2875.PubMedCentralPubMedGoogle Scholar
  47. Sánchez E G, Quintas A, Pérez-Núñez D, Nogal M, Barroso S, Carrascosa ÁL, Revilla Y. 2012. African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog, 8: e1002754.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Scaplehorn N, Holmström A, Moreau V, Frischknecht F, Reckmann I, Way M. 2002. Grb2 and Nck act cooperatively to promote actin-based motility of vaccinia virus. Curr Biol CB, 12: 740–745.CrossRefGoogle Scholar
  49. Schelhaas M, Ewers H, Rajamäki M-L, Day P M, Schiller J T, Helenius A. 2008. Human papillomavirus type 16 entry: retrograde cell surface transport along actin-rich protrusions. PLoS Pathog, 4: e1000148.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Schelhaas M, Shah B, Holzer M, Blattmann P, Kühling L, Day P M, Schiller J T, Helenius A. 2012. Entry of Human Papillomavirus Type 16 by Actin-Dependent, Clathrin- and Lipid Raft-Independent Endocytosis. PLoS Pathog, 8: e1002657.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P. 2002a. A functional link between the actin cytoskeleton and lipid rafts during budding of filamentous influenza virions. Virology, 301: 212–225.PubMedCrossRefGoogle Scholar
  52. Simpson-Holley M, Ellis D, Fisher D, Elton D, McCauley J, Digard P. 2002b. A Functional Link between the Actin Cytoskeleton and Lipid Rafts during Budding of Filamentous Influenza Virions. Virology, 301: 212–225.PubMedCrossRefGoogle Scholar
  53. Sowinski S, Jolly C, Berninghausen O, Purbhoo M A, Chauveau A, Köhler K, Oddos S, Eissmann P, Brodsky F M, Hopkins C, Onfelt B, Sattentau Q, Davis D M. 2008. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol, 10: 211–219.PubMedCrossRefGoogle Scholar
  54. Spear M, Guo J, Turner A, Yu D, Wang W, Meltzer B, He S, Hu X, Shang H, Kuhn J, Wu Y. 2014. HIV-1 Triggers WAVE2 Phosphorylation in Primary CD4 T Cells and Macrophages, Mediating Arp2/3-dependent Nuclear Migration. J Biol Chem, 289: 6949–6959.PubMedGoogle Scholar
  55. Stallcup K C, Raine C S, Fields B N. 1983. Cytochalasin B inhibits the maturation of measles virus. Virology, 124: 59–74.PubMedCrossRefGoogle Scholar
  56. Stokes G V. 1976. High-voltage electron microscope study of the release of vaccinia virus from whole cells. J Virol, 18: 636–643.PubMedCentralPubMedGoogle Scholar
  57. Tilsner J, Linnik O, Wright K M, Bell K, Roberts A G, Lacomme C, Santa Cruz S, Oparka K J. 2012. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant Physiol, 158: 1359–1370.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Vasiliver-Shamis G, Cho M W, Hioe C E, Dustin M L. 2009. Human Immunodeficiency Virus Type 1 Envelope gp120-Induced Partial T-Cell Receptor Signaling Creates an F-Actin-Depleted Zone in the Virological Synapse. J Virol, 83: 11341–11355.PubMedCentralPubMedCrossRefGoogle Scholar
  59. Vasiliver-Shamis G, Tuen M, Wu T W, Starr T, Cameron T O, Thomson R, Kaur G, Liu J, Visciano M L, Li H, Kumar R, Ansari R, Han D P, Cho M W, Dustin M L, Hioe C E. 2008. Human immunodeficiency virus type 1 envelope gp120 induces a stop signal and virological synapse formation in noninfected CD4+ T cells. J Virol, 82: 9445–9457.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Vorster P J, Guo J, Yoder A, Wang W, Zheng Y, Xu X, Yu D, Spear M, Wu Y. 2011. LIM kinase 1 modulates cortical actin and CXCR4 cycling and is activated by HIV-1 to initiate viral infection. J Biol Chem, 286: 12554–12564.PubMedCentralPubMedCrossRefGoogle Scholar
  61. De Vries E, Tscherne D M, Wienholts M J, Cobos-Jiménez V, Scholte F, García-Sastre A, Rottier PJM, de Haan C A M. 2011. Dissection of the Influenza A Virus Endocytic Routes Reveals Macropinocytosis as an Alternative Entry Pathway. PLoS Pathog, 7: e1001329.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Wakimoto H, Shimodo M, Satoh Y, Kitagawa Y, Takeuchi K, Gotoh B, Itoh M. 2013. F-Actin Modulates Measles Virus Cell-Cell Fusion and Assembly by Altering the Interaction between the Matrix Protein and the Cytoplasmic Tail of Hemagglutinin. J Virol, 87: 1974–1984.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Welch M D, Way M. 2013. Arp2/3-Mediated Actin-Based Motility: A Tail of Pathogen Abuse. Cell Host Microbe, 14: 242–255.PubMedCrossRefGoogle Scholar
  64. Wen X, Ding L, Wang J-J, Qi M, Hammonds J, Chu H, Chen X, Hunter E, Spearman P. 2014. ROCK1 and LIM Kinase Modulate Retrovirus Particle Release and Cell-Cell Transmission Events. J Virol,; DOI: 10.1128/JVI.00023-14.Google Scholar
  65. Xiang Y, Zheng K, Zhong M, Chen J, Wang X, Wang Q, Wang S, Ren Z, Fan J, Wang Y. 2014. Ubiquitin-proteasome-dependent slingshot 1 downregulation in neuronal cells inactivates cofilin to facilitate HSV-1 replication. Virology, 449: 88–95.PubMedCrossRefGoogle Scholar
  66. Yoder A, Yu D, Dong L, Iyer S R, Xu X, Kelly J, Liu J, Wang W, Vorster P J, Agulto L, Stephany D A, Cooper J N, Marsh J W, Wu Y. 2008. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell, 134: 782–792.PubMedCentralPubMedCrossRefGoogle Scholar
  67. Zheng K, Xiang Y, Wang Q, Jin F, Chen M, Ma K, Ren Z, Wang Y. 2014a. Calcium-signal facilitates herpes simplex virus type 1 nuclear transport through slingshot 1 and calpain-1 activation. Virus Res, 188C: 32–37.PubMedCrossRefGoogle Scholar
  68. Zheng K, Xiang Y, Wang X, Wang Q, Zhong M, Wang S, Wang X, Fan J, Kitazato K, Wang Y. 2014b. Epidermal growth factor receptor-PI3K signaling controls cofilin activity to facilitate herpes simplex virus 1 entry into neuronal cells. mBio, 5: e00958–00913.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Center for Biodefense and Infectious Diseases, Department of Molecular and MicrobiologyGeorge Mason UniversityManassasUSA

Personalised recommendations