Virologica Sinica

, Volume 29, Issue 4, pp 199–210 | Cite as

Labeling of influenza viruses with synthetic fluorescent and biotin-labeled lipids

  • Natalia A. IlyushinaEmail author
  • Evgeny S. Chernyy
  • Elena Y. Korchagina
  • Aleksandra S. Gambaryan
  • Stephen M. Henry
  • Nicolai V. BovinEmail author
Research Article


Direct labeling of virus particles is a powerful tool for the visualization of virus-cell interaction events. However, this technique involves the chemical modification of viral proteins that affects viral biological properties. Here we describe an alternative approach of influenza virus labeling that utilizes Function-Spacer-Lipid (FSL) constructs that can be gently inserted into the virus membrane. We assessed whether labeling with fluorescent (fluo-Ad-DOPE) or biotin-labeled (biot-CMG2-DOPE) probes has any deleterious effect on influenza virus hemagglutinin (HA) receptor specificity, neuraminidase (NA) activity, or replicative ability in vitro. Our data clearly show that neither construct significantly affected influenza virus infectivity or viral affinity to sialyl receptors. Neither construct influenced the NA activities of the influenza viruses tested, except the A/Puerto Rico/8/34 (H1N1) strain. Our data indicate that lipid labeling provides a powerful tool to analyze influenza virus infection in vitro.


bioimaging Function-Spacer-Lipid (FSL) constructs labeling of influenza viruses synthetic lipids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blake D, Bovin N, Bess D, Henry S. 2011. FSL constructs: a simple method for modifying cell/virion surfaces with a range of biological markers without affecting their viability. J Vis Exp, 54:e3289.Google Scholar
  2. Bovin N V, Korchagina E Y, Zemlyanukhina T V, Byramova N E, Galanina O E, Zemlyakov A E, Ivanov A E, Zubov V P, Mochalova L V. 1993. Synthesis of polymeric neoglycoconjugates based on N-substituted polyacrylamides. Glycoconj J, 10:142–151.PubMedCrossRefGoogle Scholar
  3. Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72:248–254.PubMedCrossRefGoogle Scholar
  4. Ewers H., Schelhaas M. 2012. Analysis of virus entry and cellular membrane dynamics by single particle tracking. In: Methods in Enzymology, 506:63–80.Google Scholar
  5. Fecek R J, Busch R, Lin H, Pal K, Cunningham C A, Cuff C F. 2006. Production of Alexa Fluor 488-labeled reovirus and characterization of target cell binding, competence, and immunogenicity of labeled virions. J Immunol Methods, 314:30–37.PubMedCrossRefGoogle Scholar
  6. Frame T, Carroll T, Korchagina E, Bovin N, Henry S. 2007. Synthetic glycolipid modification of red blood cell membranes. Transfusion, 47:876–882.PubMedCrossRefGoogle Scholar
  7. Freistadt M S, Eberle K E. 2006. Fluorescent poliovirus for flow cytometric cell surface binding studies. J Virol Methods, 134:1–7.PubMedCrossRefGoogle Scholar
  8. Georgakopoulos T, Komarraju S, Henry S, Bertolini J. 2012. An improved Fc function assay utilizing CMV antigen-coated red blood cells generated with synthetic function-spacer-lipid constructs. Vox Sanguinis, 102:72–78.PubMedCrossRefGoogle Scholar
  9. Hadac E, Federspiel M, Chernyy E, Tuzikov A, Korchagina E, Bovin N, Russell S, Henry S. 2011. Fluorescein and radiolabeled Function-Spacer-Lipid constructs allow for simple in vitro and in vivo bioimaging of enveloped virions. J Virol Methods, 176:78–84.PubMedCrossRefGoogle Scholar
  10. Henry S. 2009. Modification of red blood cells for laboratory quality control use. Curr Opin Hematol, 16:467–72.PubMedCrossRefGoogle Scholar
  11. Hult A K, Frame T, Chesla S, Henry S, Olsson M L. 2012. Flow cytometry evaluation of red blood cells mimicking naturally occurring ABO subgroups after modification with variable amounts of function-spacer-lipid A and B constructs. Transfusion, 52:247–251.PubMedCrossRefGoogle Scholar
  12. Ilyushina N A, Govorkova E A, Gray T E, Bovin N V, Webster R G. 2008. Human-like receptor specificity does not affect the neuraminidase-inhibitor susceptibility of H5N1 influenza viruses. PLoS Pathog, 4:e1000043.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Korchagina E, Tuzikov A, Formanovsky A, Popova I, Henry S, Bovin N. 2012. Towards creating cell membrane glyco-landscapes with glycan lipid constructs. Carbohydr Res, 356:238–246.PubMedCrossRefGoogle Scholar
  14. Lakadamyali M, Rust M J, Babcock H P, Zhuang X. 2003. Visualizing infection of individual influenza viruses. Proc Natl Acad Sci USA, 100:9280–9285.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Matrosovich M, Matrosovich T, Gray T, Roberts N, Klenk H. 2004. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virol, 78:12665–12667.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Matrosovich M N, Gambaryan A S, Tuzikov A B, Byramova N E, Mochalova L V, Golbraikh A A, Shenderovich M D, Finne J, Bovin N V. 1993. Probing of the receptor-binding sites of the H1 and H3 influenza virus hemagglutinins by synthetic and natural sialosides. Virology, 196:111–123.PubMedCrossRefGoogle Scholar
  17. Metzner C, Kochan F, Dangerfield J A. 2013. Fluorescence molecular painting of enveloped viruses. Mol Biotechnol, 53:9–18.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Mochalova L, Gambaryan A, Romanova J, Tuzikov A, Chinarev A, Katinger D, Katinger H, Egorov A, Bovin N. 2003. Receptorbinding properties of modern human influenza viruses primarily isolated in Vero and MDCK cells and chicken embryonated eggs. Virology, 313:473–480.PubMedCrossRefGoogle Scholar
  19. Nichols J E, Mock D J, Roberts Jr N J. 1992. Use of FITC-labeled influenza virus and flow cytometry to assess binding and internalization of virus by monocytes-macrophages and lymphocytes. Arch Virol, 130:441–455.CrossRefGoogle Scholar
  20. Oliver C, Blake D, Henry S. 2011. In vivo neutralization of anti-A and successful transfusion of A antigen-incompatible red blood cells in an animal model. Transfusion, 51:2664–2675.PubMedCrossRefGoogle Scholar
  21. Potier M, Mameli L, Belisle M, Dallaire L, Melancon S. 1979. Fluorometric assay of neuraminidase with a sodium (4-methylumbelliferyl-alpha-D-N-acetylneuraminate) substrate. Anal Biochem, 94:287–296.PubMedCrossRefGoogle Scholar
  22. Reed L J, Muench H. 1938. A simple method for estimating fifty percent endpoints. Am J Hyg, 27:493–497.Google Scholar
  23. Ruigrok R, Andree P, Hooft van Huysduynen R, Mellema J. 1984. Characterization of three highly purified influenza virus strains by electron microscopy. J Gen Virol, 65:799–802.PubMedCrossRefGoogle Scholar
  24. Rust M J, Lakadamyali M, Zhang F, Zhuang X. 2004. Assembly of endocytic machinery aroung individual influenza viruses during viral entry. Nat Struct Mol Biol, 11:567–573.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Suzuki T, Takahashi T, Saito T, Guo C T, Hidari K I, Miyamoto D, Suzuki Y. 2004. Evolutional analysis of human influenza A virus N2 neuraminidase genes based on the transition of the low-pH stability of sialidase activity. FEBS Lett, 557:228–232.PubMedCrossRefGoogle Scholar
  26. Wagner R, Matrosovich M, Klenk H. 2002. Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Rev Med Virol, 12:159–166.PubMedCrossRefGoogle Scholar
  27. Wright P F, Neumann G, Kawaoka Y. 2006. Orthomyxoviruses In: Knipe D M, Howley P M (eds), Fields Virology, 5th ed, Philadelphia: Lippincott Williams and Wilkins, pp1641–1740.Google Scholar
  28. Yoshimura A, Ohnishi S. 1984. Uncoating of influenza virus in endosomes. J Virol 51:497–504.PubMedCentralPubMedGoogle Scholar
  29. Zhang S L, Tan H, Hanson B J, Ooi E E. 2010. A simple method for Alexa Fluor dye labelling of dengue virus. J Virol Methods, 167:172–177.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Natalia A. Ilyushina
    • 1
    Email author
  • Evgeny S. Chernyy
    • 2
  • Elena Y. Korchagina
    • 2
  • Aleksandra S. Gambaryan
    • 3
  • Stephen M. Henry
    • 4
  • Nicolai V. Bovin
    • 2
    Email author
  1. 1.Food and Drug AdministrationBethesdaUSA
  2. 2.Shemyakin Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Chumakov Institute of Poliomyelitis and Viral EncephalitidesRussian Academy of Medical SciencesMoscow RegionRussia
  4. 4.Biotechnology Research InstituteAUT UniversityAucklandNew Zealand

Personalised recommendations