Skip to main content

Advertisement

SpringerLink
  • Log in
  1. Home
  2. Virologica Sinica
  3. Article
Immunogenicity and protective efficacy of recombinant M2e.Hsp70c (Hsp70359–610) fusion protein against influenza virus infection in mice
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Chimeric protein consisting of 3M2e and HSP as a universal influenza vaccine candidate: from in silico analysis to preliminary evaluation

31 October 2018

Behrokh Farahmand, Najmeh Taheri, … Fatemeh Fotouhi

Combination of conserved recombinant proteins (NP & 3M2e) formulated with Alum protected BALB/c mice against influenza A/PR8/H1N1 virus challenge

07 September 2021

Mehrnaz Forqani, Seyed Masoud Hosseini, … Fatemeh Fotouhi

Improving Cross-Protection against Influenza Virus Using Recombinant Vaccinia Vaccine Expressing NP and M2 Ectodomain Tandem Repeats

25 June 2019

Wenling Wang, Baoying Huang, … Li Ruan

Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes

09 April 2018

Liudmila A. Stepanova, Eugenia S. Mardanova, … Liudmila M. Tsybalova

VLPs containing stalk domain and ectodomain of matrix protein 2 of influenza induce protection in mice

27 February 2023

Lili Shi, Ying Long, … Xianliang Sun

Immunogenicity and protective efficacy of a DNA vaccine inducing optimal expression of the SARS-CoV-2 S gene in hACE2 mice

09 September 2022

Zhuo-xin Li, Sheng Feng, … Ning-yi Jin

An approach to the influenza chimeric subunit vaccine (3M2e-HA2-NP) provides efficient protection against lethal virus challenge

09 March 2020

Maryam Saleh, Jamileh Nowroozi, … Fatemeh Fotouhi

mRNA Vaccines as an Efficient Approach for the Rapid and Robust Induction of Host Immunity Against SARS-CoV-2

01 April 2022

Rashed Noor

Matrix-M™ adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice

28 March 2018

Sofia E. Magnusson, Arwen F. Altenburg, … Linda Stertman

Download PDF
  • Research Article
  • Published: 18 August 2014

Immunogenicity and protective efficacy of recombinant M2e.Hsp70c (Hsp70359–610) fusion protein against influenza virus infection in mice

  • Hamidreza Attaran1,
  • Hassan Nili1,2 &
  • Majid Tebianian3 

Virologica Sinica volume 29, pages 218–227 (2014)Cite this article

  • 272 Accesses

  • 1 Citations

  • Metrics details

Abstract

New strategies in vaccine development are urgently needed to combat emerging influenza viruses and to reduce the risk of pandemic disease surfacing. Being conserved, the M2e protein, is a potential candidate for universal vaccine development against influenza A viruses. Mycobacterium tuberculosis Hsp70 (mHsp70) is known to cultivate the function of immunogenic antigenpresenting cells, stimulate a strong cytotoxic T lymphocyte (CTL) response, and stop the induction of tolerance. Thus, in this study, a recombinant protein from the extracellular domain of influenza A virus matrix protein 2 (M2e), was fused to the C-terminus of Mycobacterium tuberculosis Hsp70 (Hsp70c), to generate a vaccine candidate. Humoral immune responses, IFN-γ-producing lymphocyte, and strong CTL activity were all induced to confirm the immunogenicity of M2e.Hsp70c (Hsp70359–610). And challenge tests showed protection against H1N1 and H9N2 strains in vaccinated groups. Finally these results demonstrates M2e.Hsp70c fusion protein can be a candidate for a universal influenza A vaccine.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Babapoor S, Neef T, Mittelholzer C, Girshick T, Garmendia A, Shang H, Khan M I, Burkhard P. 2012. A Novel Vaccine Using Nanoparticle Platform to Present Immunogenic M2e against Avian Influenza Infection. Influenza Res Treat, 2011:126794. doi: 10.1155/2011/126794. Epub 2012 Jan 12.

    Google Scholar 

  • Bessa J, Schmitz N, Hinton H J, Schwarz K, Jegerlehner A, Bachmann M F. 2008. Efficient induction of mucosal and systemic immune responses by virus-like particles administered intranasally: implications for vaccine design. Eur J Immunol, 38: 114–126.

    Article  CAS  PubMed  Google Scholar 

  • Bijker M S, van den Eeden S J, Franken K L, Melief C J, Offringa R, van der Burg S H. 2007. CD8+ CTL priming by exact peptide epitopes in incomplete Freund’s adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity. J Immunol, 179: 5033–5040.

    Article  CAS  PubMed  Google Scholar 

  • Black R A, Rota P A, Gorodkova N, Klenk H D, Kendal A P. 1993. Antibody response to the M2 protein of influenza A virus expressed in insect cells. J Gen Virol, 74(Pt1): 143–146.

    Article  CAS  PubMed  Google Scholar 

  • Bolhassani A, Rafati S. 2008. Heat-shock proteins as powerful weapons in vaccine development. Expert Rev Vaccines, 7: 1185–1199.

    Article  CAS  PubMed  Google Scholar 

  • Carrat F, Vergu E, Ferguson N M, Lemaitre M, Cauchemez S, Leach S, Valleron A J. 2008. Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol, 167: 775–785.

    Article  PubMed  Google Scholar 

  • Chen C H, Wang T L, Hung C F, Yang Y, Young R A, Pardoll D M, Wu T C. 2000. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res, 60: 1035–1042.

    CAS  PubMed  Google Scholar 

  • Cox N J, Subbarao K. 2000. Global epidemiology of influenza: past and present. Annu Rev Med, 51: 407–421.

    Article  CAS  PubMed  Google Scholar 

  • De Filette M, Min Jou W, Birkett A, Lyons K, Schultz B, Tonkyro A, Resch S, Fiers W. 2005. Universal influenza A vaccine: optimization of M2-based constructs. Virology, 337: 149–161.

    Article  PubMed  Google Scholar 

  • De Filette M, Martens W, Smet A, Schotsaert M, Birkett A, Londono-Arcila P, Fiers W, Saelens X. 2008. Universal influenza A M2e-HBc vaccine protects against disease even in the presence of pre-existing anti-HBc antibodies. Vaccine, 26: 6503–6507.

    Article  PubMed  Google Scholar 

  • De Filette M, Martens W, Roose K, Deroo T, Vervalle F, Bentahir M, Vandekerckhove J, Fiers W, Saelens X. 2008. An influenza A vaccine based on tetrameric ectodomain of matrix protein 2. J Biol Chem, 283: 11382–11387.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ebrahimi S M, Tebianian M. 2010. Heterologous expression, purification and characterization of the influenza A virus M2e gene fused to Mycobacterium tuberculosis HSP70(359-610) in prokaryotic system as a fusion protein. Mol Biol Rep, 37: 2877–2883.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi S M, Tebianian M. 2011. Influenza A viruses: why focusing on M2e-based universal vaccines. Virus Genes, 42: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi S M, Dabaghian M, Tebianian M, Jazi M H. 2012. In contrast to conventional inactivated influenza vaccines, 4xM2e. HSP70c fusion protein fully protected mice against lethal dose of H1, H3 and H9 influenza A isolates circulating in Iran. Virology, 430(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimi S M, Tebianian M, Toghyani H, Memarnejadian A, Attaran H R. 2010. Cloning, expression and purification of the influenza A (H9N2) virus M2e antigen and truncated Mycobacterium tuberculosis HSP70 as a fusion protein in Pichia pastoris. Protein Expr Purif, 70: 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Ernst W A, Kim H J, Tumpey T M, Jansen A D, Tai W, Cramer D V, Adler-Moore J P, Fujii G. 2006. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines. Vaccine, 24: 5158–5168.

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Liang X, Horton M S, Perry H C, Citron M P, Heidecker G J, Fu T M, Joyce J, Przysiecki C T, Keller P M, Garsky V M, Ionescu R, Rippeon Y, Shi L, Chastain M A, Condra J H, Davies M E, Liao J, Emini E A, Shiver J W. 2004. Preclinical study of influenza virus A M2 peptide conjugate vaccines in mice, ferrets, and rhesus monkeys. Vaccine, 22: 2993–3003.

    Article  CAS  PubMed  Google Scholar 

  • Fiers W, Neirynck S, Deroo T, Saelens X, Jou W M. 2001. Soluble recombinant influenza vaccines. Philos Trans R Soc Lond B Biol Sci, 356: 1961–1963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiers W, De Filette M, Birkett A, Neirynck S, Min Jou W. 2004. A "universal" human influenza A vaccine. Virus Res, 103: 173–176.

    Article  CAS  PubMed  Google Scholar 

  • Frace A M, Klimov A I, Rowe T, Black R A, Katz J M. 1999. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine, 17: 2237–2244.

    Article  CAS  PubMed  Google Scholar 

  • Fu T M, Grimm K M, Citron M P, Freed D C, Fan J, Keller P M, Shiver J W, Liang X, Joyce J G. 2009. Comparative immunogenicity evaluations of influenza A virus M2 peptide as recombinant virus like particle or conjugate vaccines in mice and monkeys. Vaccine, 27: 1440–1447.

    Article  CAS  PubMed  Google Scholar 

  • Grandea A G, 3rd, Olsen O A, Cox T C, Renshaw M, Hammond P W, Chan-Hui P Y, Mitcham J L, Cieplak W, Stewart S M, Grantham M L, Pekosz A, Kiso M, Shinya K, Hatta M, Kawaoka Y, Moyle M. 2010. Human antibodies reveal a protective epitope that is highly conserved among human and nonhuman influenza A viruses. Proc Natl Acad Sci U S A, 107: 12658–12663.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haga T, Horimoto T. 2010. Animal Models to Study Influenza Virus Pathogenesis and Control The Open Antimicrobial Agents Journal, 2: 15–21.

    Google Scholar 

  • Holsinger L J, Lamb R A. 1991. Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology, 183: 32–43.

    Article  CAS  PubMed  Google Scholar 

  • Huleatt J W, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, Tang J, McDonald W, Song L, Evans R K, Umlauf S, Tussey L, Powell T J. 2008. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine, 26: 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Ionescu R M, Przysiecki C T, Liang X, Garsky V M, Fan J, Wang B, Troutman R, Rippeon Y, Flanagan E, Shiver J, Shi L. 2006. Pharmaceutical and immunological evaluation of human papillomavirus viruslike particle as an antigen carrier. J Pharm Sci, 95: 70–79.

    Article  CAS  PubMed  Google Scholar 

  • Jazi M H, Dabaghian M, Tebianian M, Gharagozlou M J, Ebrahimi S M. 2012. In vivo electroporation enhances immunogenicity and protection against influenza A virus challenge of an M2e-HSP70c DNA vaccine. Virus Res, 167(2):219–25.

    Article  CAS  PubMed  Google Scholar 

  • Kutzler M A, Weiner D B. 2008. DNA vaccines: ready for prime time? Nat Rev Genet, 9: 776–788.

    Article  CAS  PubMed  Google Scholar 

  • Lamb R A, Zebedee S L, Richardson C D. 1985. Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell, 40: 627–633.

    Article  CAS  PubMed  Google Scholar 

  • Lau L L, Cowling B J, Fang V J, Chan K H, Lau E H, Lipsitch M, Cheng C K, Houck P M, Uyeki T M, Peiris J S, Leung G M. 2010. Viral shedding and clinical illness in naturally acquired influenza virus infections. J Infect Dis, 201: 1509–1516.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Yang X, Li L, Liu H, Liu J. 2006. A truncated C-terminal fragment of Mycobacterium tuberculosis HSP70 gene enhanced potency of HBV DNA vaccine. Vaccine, 24: 3321–3331.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Li H, Chen Y H. 2003. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol Med Microbiol, 35: 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Zou P, Ding J, Lu Y, Chen Y H. 2005. Sequence comparison between the extracellular domain of M2 protein human and avian influenza A virus provides new information for bivalent influenza vaccine design. Microbes Infect, 7: 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen Y H. 2004. High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine, 23: 366–371.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Tumpey T M, Morken T, Zaki S R, Cox N J, Katz J M. 1999. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J Virol, 73: 5903–5911.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macken C, Lu H, Goodman J, Boykin L. 2001. The value of a database in surveillance and vaccine selection. International Congress Series, 1219: 103–106.

    Article  Google Scholar 

  • Mirzaei N, Mokhtari Azad T, Nategh R, Soleimanjahi H, Amirmozafari N. 2014. Construction of recombinant bacmid containing m2e-ctxb and producing the fusion protein in insect cell lines. Iran Red Crescent Med J, 16(2):e13176. doi: 10.5812/ircmj.13176. Epub 2014 Feb 7.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mozdzanowska K, Furchner M, Zharikova D, Feng J, Gerhard W. 2005. Roles of CD4+ T-cell-independent and -dependent antibody responses in the control of influenza virus infection: evidence for noncognate CD4+ T-cell activities that enhance the therapeutic activity of antiviral antibodies. J Virol, 79: 5943–5951.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mozdzanowska K, Feng J, Eid M, Kragol G, Cudic M, Otvos L, Jr., Gerhard W. 2003. Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine, 21: 2616–2626.

    Article  CAS  PubMed  Google Scholar 

  • Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou W M, Fiers W. 1999. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med, 5: 1157–1163.

    Article  CAS  PubMed  Google Scholar 

  • Pinto L H, Holsinger L J, Lamb R A. 1992. Influenza virus M2 protein has ion channel activity. Cell, 69: 517–528.

    Article  CAS  PubMed  Google Scholar 

  • Qazi K R, Wikman M, Vasconcelos N M, Berzins K, Stahl S, Fernandez C. 2005. Enhancement of DNA vaccine potency by linkage of Plasmodium falciparum malarial antigen gene fused with a fragment of HSP70 gene. Vaccine, 23: 1114–1125.

    Article  CAS  PubMed  Google Scholar 

  • Reed L J, Muench H A. 1983. Simple method for estimating fifty per cent endpoints. Am. J. Epidemiol., 27: 493–497

    Google Scholar 

  • Reid A H, Fanning T G, Janczewski T A, McCall S, Taubenberger J K. 2002. Characterization of the 1918 “Spanish” influenza virus matrix gene segment. J Virol, 76: 10717–10723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rimmelzwaan G F, Baars M, Claas E C, Osterhaus A D. 1998. Comparison of RNA hybridization, hemagglutination assay, titration of infectious virus and immunofluorescence as methods for monitoring influenza virus replication in vitro. J Virol Methods, 74: 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Sealy R, Surman S, Hurwitz J L, Coleclough C. 2003. Antibody response to influenza infection of mice: different patterns for glycoprotein and nucleocapsid antigens. Immunology, 108: 431–439.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segal B H, Wang X Y, Dennis C G, Youn R, Repasky E A, Manjili M H, Subjeck J R. 2006. Heat shock proteins as vaccine adjuvants in infections and cancer. Drug Discov Today, 11: 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Seo S H, Hoffmann E, Webster R G. 2002. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. Nat Med, 8: 950–954.

    Article  CAS  PubMed  Google Scholar 

  • Swinkels W J, Hoeboer J, Sikkema R, Vervelde L, Koets A D. 2013. Vaccination induced antibodies to recombinant avian influenza A virus M2 protein or synthetic M2e peptide do not bind to the M2 protein on the virus or virus infected cells. Virol J, 10:206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tompkins S M, Zhao Z S, Lo C Y, Misplon J A, Liu T, Ye Z, Hogan R J, Wu Z, Benton K A, Tumpey T M, Epstein S L. 2007. Matrix protein 2 vaccination and protection against influenza viruses, including subtype H5N1. Emerg Infect Dis, 13: 426–435.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S. 2008. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine, 26: 2100–2110.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • WHO. 2002. Draft WHO guidelines on the use of vaccines and antivirals during influenza pandemics. Wkly Epidemiol Rec, 77: 394–404.

    Google Scholar 

  • Zhao G, Lin Y, Du L, Guan J, Sun S, Sui H, Kou Z, Chan C C, Guo Y, Jiang S, Zheng B J, Zhou Y. 2010. An M2e-based multiple antigenic peptide vaccine protects mice from lethal challenge with divergent H5N1 influenza viruses. Virol J, 7: 9.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Avian Diseases Research Center, Faculty of Veterinary Medicine, University of Shiraz, Shiraz, 71345-1731, Iran

    Hamidreza Attaran & Hassan Nili

  2. Department of Clinical Studies, School of Veterinary Medicine, Shahrekord University, Shahrekord, 88186/34141, Iran

    Hassan Nili

  3. Department of Biotechnology and Immunology, Razi Vaccine and Serum Research Institute (RVSRI), Karaj, 31975/148, Tehran, Iran

    Majid Tebianian

Authors
  1. Hamidreza Attaran
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Hassan Nili
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Majid Tebianian
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Hamidreza Attaran.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Attaran, H., Nili, H. & Tebianian, M. Immunogenicity and protective efficacy of recombinant M2e.Hsp70c (Hsp70359–610) fusion protein against influenza virus infection in mice. Virol. Sin. 29, 218–227 (2014). https://doi.org/10.1007/s12250-014-3428-8

Download citation

  • Received: 28 April 2014

  • Accepted: 05 August 2014

  • Published: 18 August 2014

  • Issue Date: August 2014

  • DOI: https://doi.org/10.1007/s12250-014-3428-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • influenza A virus
  • M2e.Hsp70
  • recombinant fusion protein
  • universal influenza vaccine
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.236.241.39

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.