Virologica Sinica

, Volume 29, Issue 1, pp 48–60 | Cite as

The phenotype and activation status of regulatory T cells during Friend retrovirus infection

  • Jara J. Joedicke
  • Kirsten K. Dietze
  • Gennadiy Zelinskyy
  • Ulf DittmerEmail author
Research Article


The suppressive capacity of regulatory T cells (Tregs) has been extensively studied and is well established for many diseases. The expansion, accumulation, and activation of Tregs in viral infections are of major interest in order to find ways to alter Treg functions for therapeutic benefit. Tregs are able to dampen effector T cell responses to viral infections and thereby contribute to the establishment of a chronic infection. In the Friend retrovirus (FV) mouse model, Tregs are known to expand in all infected organs. To better understand the characteristics of these Treg populations, their phenotype was analyzed in detail. During acute FV-infection, Tregs became activated in the spleen and bone marrow, as indicated by various T cell activation markers, such as CD43 and CD103. Interestingly, Tregs in the bone marrow, which contains the highest viral loads during acute infection, displayed greater levels of activation than Tregs from the spleen. Treg expansion was driven by proliferation but no FV-specific Tregs could be detected. Activated Tregs in FV-infection did not produce Granzyme B (GzmB) or tumor necrosis factor α (TNFα), which are thought to be a potential mechanism for their suppressive activity. Furthermore, Tregs expressed inhibitory markers, such as TIM3, PD-1 and PD-L1. Blocking TIM3 and PD-L1 with antibodies during chronic FV-infection increased the numbers of activated Tregs. These data may have important implications for the understanding of Treg functions during chronic viral infections.


regulatory T cells Friend retrovirus Vβ5+ Treg activation marker 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhmetzyanova I, Zelinskyy G, Schimmer S, Brandau S, Altenhoff P, Sparwasser T, Dittmer U. 2013. Tumor-specific cd4+ t cells develop cytotoxic activity and eliminate virus-induced tumor cells in the absence of regulatory t cells. Cancer Immunol Immun: CII, 62: 257–271.CrossRefGoogle Scholar
  2. Akimova T, Beier U H, Wang L, Levine M H, Hancock W W. 2011. Helios expression is a marker of t cell activation and proliferation. PloS One, 6: e24226.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Alatrakchi N, Koziel M. 2009. Regulatory t cells and viral liver disease. J Viral Hepatitis, 16: 223–229.CrossRefGoogle Scholar
  4. Antunes I, Tolaini M, Kissenpfennig A, Iwashiro M, Kuribayashi K, Malissen B, Hasenkrug K, Kassiotis G. 2008. Retrovirus-specificity of regulatory t cells is neither present nor required in preventing retrovirus-induced bone marrow immune pathology. Immunity, 29: 782–794.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barber D L, Wherry E J, Masopust D, Zhu B, Allison J P, Sharpe A H, Freeman G J, Ahmed R. 2006. Restoring function in exhausted cd8 t cells during chronic viral infection. Nature, 439: 682–687.PubMedCrossRefGoogle Scholar
  6. Barron L, Dooms H, Hoyer K K, Kuswanto W, Hofmann J, O’Gorman W E, Abbas A K. 2010. Cutting edge: Mechanisms of il-2-dependent maintenance of functional regulatory t cells. J Immunol, 185: 6426–6430.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bedoya F, Cheng G S, Leibow A, Zakhary N, Weissler K, Garcia V, Aitken M, Kropf E, Garlick D S, Wherry E J, Erikson J, Caton A J. 2013. Viral antigen induces differentiation of foxp3+ natural regulatory t cells in influenza virus-infected mice. J Immunol, 190: 6115–6125.PubMedCrossRefGoogle Scholar
  8. Blackburn S D, Shin H, Haining W N, Zou T, Workman C J, Polley A, Betts M R, Freeman G J, Vignali D A, Wherry E J. 2009. Coregulation of cd8+ t cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol, 10: 29–37.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Cabarrocas J, Cassan C, Magnusson F, Piaggio E, Mars L, Derbinski J, Kyewski B, Gross D A, Salomon B L, Khazaie K, Saoudi A, Liblau R S. 2006. Foxp3+ cd25+ regulatory t cells specific for a neo-self-antigen develop at the double-positive thymic stage. P Nat Acad Sci USA, 103: 8453–8458.CrossRefGoogle Scholar
  10. Chevalier M F, Weiss L. 2013. The split personality of regulatory t cells in hiv infection. Blood, 121: 29–37.PubMedCrossRefGoogle Scholar
  11. Choi Y, Kappler J W, Marrack P. 1991. A superantigen encoded in the open reading frame of the 3’ long terminal repeat of mouse mammary tumour virus. Nature, 350: 203–207.PubMedCrossRefGoogle Scholar
  12. Coquet J M, Ribot J C, Babala N, Middendorp S, van der Horst G, Xiao Y, Neves J F, Fonseca-Pereira D, Jacobs H, Pennington D J, Silva-Santos B, Borst J. 2013. Epithelial and dendritic cells in the thymic medulla promote cd4+foxp3+ regulatory t cell development via the cd27-cd70 pathway. J Exp Med, 210: 715–728.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Coutinho A, Caramalho I, Seixas E, Demengeot J. 2005. Thymic commitment of regulatory t cells is a pathway of tcr-dependent selection that isolates repertoires undergoing positive or negative selection. Curr Top Microbiol, 293: 43–71.Google Scholar
  14. Dietze K K, Zelinskyy G, Liu J, Kretzmer F, Schimmer S, Dittmer U. 2013. Combining regulatory t cell depletion and inhibitory receptor blockade improves reactivation of exhausted virus-specific cd8(+) t cells and efficiently reduces chronic retroviral loads. PLoS Pathog, 9: e1003798.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dittmer U, He H, Messer R J, Schimmer S, Olbrich A R, Ohlen C, Greenberg P D, Stromnes I M, Iwashiro M, Sakaguchi S, Evans L H, Peterson K E, Yang G, Hasenkrug K J. 2004. Functional impairment of cd8(+) t cells by regulatory t cells during persistent retroviral infection. Immunity, 20: 293–303.PubMedCrossRefGoogle Scholar
  16. Ebinuma H, Nakamoto N, Li Y, Price D A, Gostick E, Levine B L, Tobias J, Kwok W W, Chang K M. 2008. Identification and in vitro expansion of functional antigen-specific cd25+ foxp3+ regulatory t cells in hepatitis c virus infection. J Virol, 82: 5043–5053.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Fontenot J D, Rasmussen J P, Williams L M, Dooley J L, Farr A G, Rudensky A Y. 2005. Regulatory t cell lineage specification by the forkhead transcription factor foxp3. Immunity, 22: 329–341.PubMedCrossRefGoogle Scholar
  18. Francisco L M, Salinas V H, Brown K E, Vanguri V K, Freeman G J, Kuchroo V K, Sharpe A H. 2009. Pd-l1 regulates the development, maintenance, and function of induced regulatory t cells. J Exp Med, 206: 3015–3029.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Furuichi Y, Tokuyama H, Ueha S, Kurachi M, Moriyasu F, Kakimi K. 2005. Depletion of cd25+cd4+t cells (tregs) enhances the hbv-specific cd8+ t cell response primed by DNA immunization. World J Gastroentero, 11: 3772–3777.Google Scholar
  20. Gottschalk R A, Corse E, Allison J P. 2012. Expression of helios in peripherally induced foxp3+ regulatory t cells. J Immunol, 188: 976–980.PubMedCrossRefGoogle Scholar
  21. Iwashiro M, Messer R J, Peterson K E, Stromnes I M, Sugie T, Hasenkrug K J. 2001. Immunosuppression by cd4+ regulatory t cells induced by chronic retroviral infection. P Nat Acad Sci USA, 98: 9226–9230.CrossRefGoogle Scholar
  22. Jones R B, Ndhlovu L C, Barbour J D, Sheth P M, Jha A R, Long B R, Wong J C, Satkunarajah M, Schweneker M, Chapman J M, Gyenes G, Vali B, Hyrcza M D, Yue F Y, Kovacs C, Sassi A, Loutfy M, Halpenny R, Persad D, Spotts G, Hecht F M, Chun T W, McCune J M, Kaul R, Rini J M, Nixon D F, Ostrowski M A. 2008. Tim-3 expression defines a novel population of dysfunctional t cells with highly elevated frequencies in progressive hiv-1 infection. J Exp Med, 205: 2763–2779.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Killebrew J R, Perdue N, Kwan A, Thornton A M, Shevach E M, Campbell D J. 2011. A self-reactive tcr drives the development of foxp3+ regulatory t cells that prevent autoimmune disease. J Immunol, 187: 861–869.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kohm A P, Carpentier P A, Anger H A, Miller S D. 2002. Cutting edge: Cd4+cd25+ regulatory t cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J Immunol, 169: 4712–4716.PubMedGoogle Scholar
  25. Kryworuchko M, Theze J. 2006. Interleukin-2: From t cell growth and homeostasis to immune reconstitution of hiv patients. Vitam Horm, 74: 531–547.PubMedCrossRefGoogle Scholar
  26. Leavy O. 2013. Regulatory t cells: The thymic medulla — a cradle for treg cell development. Nat Rev Immunol, 13: 304.PubMedCrossRefGoogle Scholar
  27. Li W, Green W R. 2011. Immunotherapy of murine retrovirus-induced acquired immunodeficiency by cd4 t regulatory cell depletion and pd-1 blockade. J Virol, 85: 13342–13353.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lilly F, Steeves R A. 1973. B-tropic friend virus: A host-range pseudotype of spleen focus-forming virus (sffv). Virology, 55: 363–370.PubMedCrossRefGoogle Scholar
  29. Malek T R. 2003. The main function of il-2 is to promote the development of t regulatory cells. J Leukocyte Biol, 74: 961–965.PubMedCrossRefGoogle Scholar
  30. Manigold T, Racanelli V. 2007. T-cell regulation by cd4 regulatory t cells during hepatitis b and c virus infections: Facts and controversies. Lancet Infect Dis, 7: 804–813.PubMedCrossRefGoogle Scholar
  31. Mills K H. 2004. Regulatory t cells: Friend or foe in immunity to infection? Nat Rev Immunol, 4: 841–855.PubMedCrossRefGoogle Scholar
  32. Myers L, Joedicke J J, Carmody A B, Messer R J, Kassiotis G, Dudley J P, Dittmer U, Hasenkrug K J. 2013. Il-2-independent and tnf-alpha-dependent expansion of vbeta5+ natural regulatory t cells during retrovirus infection. J Immunol, 190: 5485–5495.PubMedCrossRefGoogle Scholar
  33. Nilsson J, Boasso A, Velilla P A, Zhang R, Vaccari M, Franchini G, Shearer G M, Andersson J, Chougnet C. 2006. Hiv-1-driven regulatory t-cell accumulation in lymphoid tissues is associated with disease progression in hiv/aids. Blood, 108: 3808–3817.PubMedCrossRefGoogle Scholar
  34. Palmer B E, Neff C P, Lecureux J, Ehler A, Dsouza M, Remling-Mulder L, Korman A J, Fontenot A P, Akkina R. 2013. In vivo blockade of the pd-1 receptor suppresses hiv-1 viral loads and improves cd4+ t cell levels in humanized mice. J Immunol, 190: 211–219.PubMedCentralPubMedCrossRefGoogle Scholar
  35. Piersma S J, van der Hulst J M, Kwappenberg K M, Goedemans R, van der Minne C E, van der Burg S H. 2010. Influenza matrix 1-specific human cd4+ foxp3+ and foxp3(-) regulatory t cells can be detected long after viral clearance. Eur J Immunol, 40: 3064–3074.PubMedCrossRefGoogle Scholar
  36. Presicce P, Orsborn K, King E, Pratt J, Fichtenbaum C J, Chougnet C A. 2011. Frequency of circulating regulatory t cells increases during chronic hiv infection and is largely controlled by highly active antiretroviral therapy. PloS One, 6: e28118.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Punkosdy G A, Blain M, Glass D D, Lozano M M, O’Mara L, Dudley J P, Ahmed R, Shevach E M. 2011. Regulatory t-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. P Nat Acad Sci USA, 108: 3677–3682.CrossRefGoogle Scholar
  38. Robertson S J, Messer R J, Carmody A B, Hasenkrug K J. 2006. In vitro suppression of cd8+ t cell function by friend virus-induced regulatory t cells. J Immunol, 176: 3342–3349.PubMedGoogle Scholar
  39. Sadlack B, Merz H, Schorle H, Schimpl A, Feller A C, Horak I. 1993. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell, 75: 253–261.PubMedCrossRefGoogle Scholar
  40. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. 1995. Immunologic self-tolerance maintained by activated t cells expressing il-2 receptor alpha-chains (cd25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol, 155: 1151–1164.PubMedGoogle Scholar
  41. Sakuishi K, Ngiow S F, Sullivan J M, Teng M W, Kuchroo V K, Smyth M J, Anderson A C. 2013. Tim3foxp3 regulatory t cells are tissue-specific promoters of t-cell dysfunction in cancer. Oncoimmunology, 2: e23849.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sanchez A M, Zhu J, Huang X, Yang Y. 2012. The development and function of memory regulatory t cells after acute viral infections. J Immunol, 189: 2805–2814.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Scheffold A, Huhn J, Hofer T. 2005. Regulation of cd4+cd25+ regulatory t cell activity: It takes (il-)two to tango. Eur J Immunol, 35: 1336–1341.PubMedCrossRefGoogle Scholar
  44. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S. 2006. Foxp3-dependent and -independent molecules specific for cd25+cd4+ natural regulatory t cells revealed by DNA microarray analysis. Int Immunol, 18: 1197–1209.PubMedCrossRefGoogle Scholar
  45. Suzuki H, Duncan G S, Takimoto H, Mak T W. 1997. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the il-2 receptor beta chain. J Exp Med, 185: 499–505.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Taylor A L, Llewelyn M J. 2010. Superantigen-induced proliferation of human cd4+cd25-t cells is followed by a switch to a functional regulatory phenotype. J Immunol, 185: 6591–6598.PubMedCrossRefGoogle Scholar
  47. Thornton A M, Korty P E, Tran D Q, Wohlfert E A, Murray P E, Belkaid Y, Shevach E M. 2010. Expression of helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced foxp3+ t regulatory cells. J Immunol, 184: 3433–3441.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Verhagen J, Wraith D C. 2010. Comment on “expression of helios, an ikaros transcription factor family member, differentiates thymic-derived from peripherally induced foxp3+ t regulatory cells”. J Immunol, 185: 7129; author reply 7130.PubMedCrossRefGoogle Scholar
  49. Wang H Y, Lee D A, Peng G, Guo Z, Li Y, Kiniwa Y, Shevach E M, Wang R F. 2004. Tumor-specific human cd4+ regulatory t cells and their ligands: Implications for immunotherapy. Immunity, 20: 107–118.PubMedCrossRefGoogle Scholar
  50. Wei W Z, Morris G P, Kong Y C. 2004. Anti-tumor immunity and autoimmunity: A balancing act of regulatory t cells. Cancer Immunol Immun, 53: 73–78.CrossRefGoogle Scholar
  51. Willerford D M, Chen J, Ferry J A, Davidson L, Ma A, Alt F W. 1995. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity, 3: 521–530.PubMedCrossRefGoogle Scholar
  52. Woodland D, Happ M P, Bill J, Palmer E. 1990. Requirement for cotolerogenic gene products in the clonal deletion of i-e reactive t cells. Science, 247: 964–967.PubMedCrossRefGoogle Scholar
  53. Woodland D L, Blackman M A. 1993. How do t-cell receptors, mhc molecules and superantigens get together? Immunology Today, 14: 208–212.PubMedCrossRefGoogle Scholar
  54. Yang J H, Zhang Y X, Yu R B, Su C, Sun N X. 2006. cd4+ cd25+ regulatory t cells suppress cd4+ t cell responses in patients with persistent hepatitis c virus infection. Chinese Journal of Internal Medicine, 45: 29–33.CrossRefGoogle Scholar
  55. Young G R, Ploquin M J, Eksmond U, Wadwa M, Stoye J P, Kassiotis G. 2012. Negative selection by an endogenous retrovirus promotes a higher-avidity cd4+ t cell response to retroviral infection. PLoS Pathog, 8: e1002709.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Zelinskyy G, Kraft A R, Schimmer S, Arndt T, Dittmer U. 2006. Kinetics of cd8+ effector t cell responses and induced cd4+ regulatory t cell responses during friend retrovirus infection. Eur J Immunol, 36: 2658–2670.PubMedCrossRefGoogle Scholar
  57. Zelinskyy G, Dietze K K, Husecken Y P, Schimmer S, Nair S, Werner T, Gibbert K, Kershaw O, Gruber A D, Sparwasser T, Dittmer U. 2009. The regulatory t-cell response during acute retroviral infection is locally defined and controls the magnitude and duration of the virus-specific cytotoxic t-cell response. Blood, 114: 3199–3207.PubMedCrossRefGoogle Scholar
  58. Zhou Q, Munger M E, Highfill S L, Tolar J, Weigel B J, Riddle M, Sharpe A H, Vallera D A, Azuma M, Levine B L, June C H, Murphy W J, Munn D H, Blazar B R. 2010. Program death-1 signaling and regulatory t cells collaborate to resist the function of adoptively transferred cytotoxic t lymphocytes in advanced acute myeloid leukemia. Blood, 116: 2484–2493.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jara J. Joedicke
    • 1
  • Kirsten K. Dietze
    • 1
  • Gennadiy Zelinskyy
    • 1
  • Ulf Dittmer
    • 1
    Email author
  1. 1.Institute for Virology, University Hospital EssenUniversity of Duisburg-EssenEssenGermany

Personalised recommendations