Virologica Sinica

, Volume 29, Issue 1, pp 40–47 | Cite as

Differential selection in HIV-1 gp120 between subtype B and East Asian variant B’

  • Stefan Dang
  • Yan Wang
  • Bettina Budeus
  • Jens Verheyen
  • Rongge Yang
  • Daniel Hoffmann
Research Article

Abstract

HIV-1 evolves strongly and undergoes geographic differentiation as it spreads in diverse host populations around the world. For instance, distinct genomic backgrounds can be observed between the pandemic subtype B, prevalent in Europe and North-America, and its offspring clade B’ in East Asia. Here we ask whether this differentiation affects the selection pressure experienced by the virus. To answer this question we evaluate selection pressure on the HIV-1 envelope protein gp120 at the level of individual codons using a simple and fast estimation method based on the ratio ka/ks of amino acid changes to synonymous changes. To validate the approach we compare results to those from a state-of-the-art mixed-effect method. The agreement is acceptable, but the analysis also demonstrates some limitations of the simpler approach. Further, we find similar distributions of codons under stabilizing and directional selection pressure in gp120 for subtypes B and B’ with more directional selection pressure in variable loops and more stabilizing selection in the constant regions. Focusing on codons with increased ka/ks values in B’, we show that these codons are scattered over the whole of gp120, with remarkable clusters of higher density in regions flanking the variable loops. We identify a significant statistical association of glycosylation sites and codons with increased ka/ks values.

Keywords

human immunodeficiency virus 1 selection pressure genomic background 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen L, Lee C. 2006. Distinguishing hiv-1 drug resistance, accessory, and viral fitness mutations using conditional selection pressure analysis of treated versus untreated patient samples. Biol Direct, 1:14.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Chen L, Perlina A, Lee C J. 2004. Positive selection detection in 40,000 human immunodeficiency virus (hiv) type 1 sequences automatically identifies drug resistance and positive fitness mutations in hiv protease and reverse transcriptase. J Virol, 78: 3722–3732.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Choisy M, Woelk C H, Guégan J F, and Robertson D L. 2004. Comparative study of adaptive molecular evolution in different human immunodeficiency virus groups and subtypes. J Virol, 78:1962–1970.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Delport W, Poon A F, Frost S D, and Kosakovsky Pond S L. 2010. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics, 26:2455–2457.PubMedCrossRefGoogle Scholar
  5. Deng X, Liu H, Shao Y, Rayner S, and Yang R. 2008. The epidemic origin and molecular properties of b’: a founder strain of the hiv-1 transmission in asia. AIDS, 22: 1851–1858.PubMedCrossRefGoogle Scholar
  6. Graf M, Shao Y, Zhao Q, Seidl T, Köstler J, Wolf H, and Wagner R. 1998. Cloning and characterization of a virtually full-length hiv type 1 genome from a subtype b’-thai strain representing the most prevalent b-clade isolate in china. AIDS Res Hum Retroviruses, 14: 285–288.PubMedCrossRefGoogle Scholar
  7. Huelsenbeck J P, Jain S, Frost S W, and Pond S L. 2006. A dirichlet process model for detecting positive selection in proteincoding dna sequences. Proc Natl Acad Sci U S A, 103: 6263–6268.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Katoh K, Misawa K, Kuma K, and Miyata T. 2002. Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. Nucleic Acids Res, 30:3059–3066.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Kimura M. 1968. Evolutionary rate at the molecular level. Nature, 217:624–626.PubMedCrossRefGoogle Scholar
  10. Li W H. 1993. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J Mol Evol, 36:96–99.PubMedCrossRefGoogle Scholar
  11. Li Z, He X, Li F, Yang Y, Wang Q, Wang Z, Xing H, Takebe Y, and Shao Y. 2012a. Tracing the origin and history of hiv-1 subtype b’ epidemic in china by near full-length genome analyses. AIDS, 26: 877–884.PubMedCrossRefGoogle Scholar
  12. Li Z, Huang Y, Ouyang Y, Shao Y, and Ma L. 2012b. CorMut: Detect the correlated mutations based on selection pressure. R package version 1.2.0.Google Scholar
  13. Liu J, Bartesaghi A, Borgnia M J, Sapiro G, and Subramaniam S. 2008. Molecular architecture of native hiv-1 gp120 trimers. Nature. 455:109–113.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Mao Y, Wang L, Gu C, Herschhorn A, Xiang S H, Haim H, Yang X, and Sodroski J. 2012. Subunit organization of the membrane-bound hiv-1 envelope glycoprotein trimer. Nat Struct Mol Biol. 19:893–899.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Murrell B, Wertheim J O, Moola S, Weighill T, Scheffler K, and Kosakovsky Pond S L. 2012. Detecting individual sites subject to episodic diversifying selection. PLoS Genet. 8: e1002764.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Nei M, and Gojobori T. 1986. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 3:418–426.PubMedGoogle Scholar
  17. Nielsen R, and Yang Z. 1998. Likelihood models for detecting positively selected amino acid sites and applications to the hiv-1 envelope gene. Genetics. 148:929–936.PubMedGoogle Scholar
  18. Pancera M, Majeed S, Ban Y E, Chen L, Huang C C, Kong L, Kwon Y D, Stuckey J, Zhou T, Robinson J E, Schief W R, Sodroski J, Wyatt R, and Kwong P D. 2010. Structure of hiv-1 gp120 with gp41-interactive region reveals layered envelope architecture and basis of conformational mobility. Proc Natl Acad Sci U S A. 107:1166–1171.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Pond S L, Frost S D, Grossman Z, Gravenor M B, Richman D D, and Brown A J. 2006. Adaptation to different human populations by hiv-1 revealed by codon-based analyses. PLoS Comput Biol. 2:e62.PubMedCrossRefGoogle Scholar
  20. R Development Core Team. 2006. R: A Language and Environment for Statistical Computing. R version 3.0.0; http://www.R-project.org.Google Scholar
  21. Ratner L, Haseltine W, Patarca R, Livak K J, Starcich B, Josephs S F, Doran E R, Rafalski J A, Whitehorn E A, and Baumeister K. 1985. Complete nucleotide sequence of the aids virus, htlv-iii. Nature. 313:277–284.PubMedCrossRefGoogle Scholar
  22. Rice P, Longden I, and Bleasby A. 2000. Emboss: the european molecular biology open software suite. Trends Genet. 16: 276–277.PubMedCrossRefGoogle Scholar
  23. Tran E E, Borgnia M J, Kuybeda O, Schauder D M, Bartesaghi A, Frank G A, Sapiro G, Milne J L, and Subramaniam S. 2012. Structural mechanism of trimeric hiv-1 envelope glycoprotein activation. PLoS Pathog. 8:e1002797.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Travers S A, O’Connell M J, McCormack G P, and McInerney J O. 2005. Evidence for heterogeneous selective pressures in the evolution of the env gene in different human immunodeficiency virus type 1 subtypes. J Virol. 79:1836–1841.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Wang W, Nie J, Prochnow C, Truong C, Jia Z, Wang S, Chen X S, and Wang Y. 2013a. A systematic study of the n-glycosylation sites of hiv-1 envelope protein on infectivity and antibody-mediated neutralization. Retrovirology. 10:14.PubMedCrossRefGoogle Scholar
  26. Wang Y, Rawi R, Wilms C, Heider D, Yang R, and Hoffmann D. 2013b. A small set of succinct signature patterns distinguishes chinese and non-chinese hiv-1 genomes. PLoS One. 8: e58804.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Wernersson R, and Pedersen A G. 2003. Revtrans: Multiple alignment of coding dna from aligned amino acid sequences. Nucleic Acids Res. 31:3537–3539.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stefan Dang
    • 1
  • Yan Wang
    • 2
  • Bettina Budeus
    • 1
  • Jens Verheyen
    • 3
  • Rongge Yang
    • 2
  • Daniel Hoffmann
    • 1
  1. 1.Research Group Bioinformatics, Center of Medical Biotechnology and Faculty of BiologyUniversity of Duisburg-EssenEssenGermany
  2. 2.AIDS and HIV Research Group, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  3. 3.Institute of VirologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations