Abstract
For subunit vaccines, adjuvants play a key role in shaping the magnitude, persistence and form of targeted antigen-specific immune response. Flagellin is a potent immune activator by bridging innate inflammatory responses and adaptive immunity and an adjuvant candidate for clinical application. Calcium phosphate nanoparticles are efficient carriers for different biomolecules like DNA, RNA, peptides and proteins. Flagellin-functionalized calcium phosphate nanoparticles were prepared and their immunostimulatory effect on the innate immune system, i.e. the cytokine production, was studied. They induced the production of the proinflammatory cytokines IL-8 (Caco-2 cells) and IL-1β (bone marrow-derived macrophages; BMDM) in vitro and IL-6 in vivo after intraperitoneal injection in mice. The immunostimulation was more pronounced than with free flagellin.
This is a preview of subscription content, access via your institution.
References
Amicizia D, Domnich A, Panatto D, Lai P L, Cristina M L, Avio U, and Gasparini R. 2013. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccin Immunother, 9: 1163–1171.
Blutt S E, Miller A D, Salmon S L, Metzger D W, and Conner M E. 2012. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol, 5: 712–719.
Coffman R L, Sher A, and Seder R A. 2010. Vaccine adjuvants: putting innate immunity to work. Immunity, 4: 492–503.
Demento S L, Siefert A L, Bandyopadhyay A, Sharp F A, and Fahmy T M. 2011. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol., 29: 294–306.
Dorozhkin S V, and Epple M. 2002. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 41: 3130–3146.
Epand R M, and Vogel H J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta, 1462: 11–28.
Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw M H, Kim Y G, and Núñez G. 2012. NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol., 13: 449–456.
Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman M J, Huby T, Guerin M, and Le Goff W. 2011. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem., 35: 30926–30936.
Harandi A M, Medaglini D, and Shattock R J. 2010. Vaccine adjuvants: a priority for vaccine research. Vaccine, 28: 2363–2366.
Honko A N, and Mizel S B. 2005. Effects of flagellin on innate and adaptive immunity. Immunol Res, 33: 83–101.
Klinman D M, Klaschik S, Sato T, and Tross D. 2009. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev., 61: 248–255.
Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, and Westendorf A M. 2013. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol., 190: 6221–6229.
Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf A M, and Epple M. 2012. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J. Mater. Chem., 22: 396–404.
Krishnamachari Y, and Salem A K. 2009. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev., 61: 205–217.
Liu F, Yang J, Zhang Y, Zhou D, Chen Y, Gai W, Shi W, Li Q, Tien P, and Yan H. 2010. Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy. Biochem. Biophys. Res. Commun., 392: 582–587.
Mbow M L, De Gregorio E, Valiante N M, and Rappuoli R. 2010. New adjuvants for human vaccines. Curr. Opin. Immunol., 22: 411–416.
Miao E A, Andersen-Nissen E, Warren S E, and Aderem A. 2007. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin. Immunopathol., 29: 275–288.
Mizel S B, and Bates J T. 2010. Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol., 185: 5677–5682.
Neumann S, Kovtun A, Dietzel I D, Epple M, and Heumann R. 2009. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials, 30: 6794–6802.
Shi W, Li Y H, Liu F, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Han C, Fan M W, and Yan H M. 2012. Flagellin enhances saliva IgA response and protection of anti-caries DNA vaccine. J. Dent. Res., 91: 249–254.
Sokolova V, Knuschke T, Buer J, Westendorf A M, and Epple M. 2011. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater., 7: 4029–4036.
Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, and Westendorf A M. 2010. The use of calcium phosphate nanoparticles encapsulating toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials, 31: 5627–5633.
Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf A M, and Epple M. 2013. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater., 9: 7527–7535.
Sokolova V, Rotan O, Klesing J, Nalbant P, Buer J, Knuschke T, Westendorf A M, and Epple M. 2012. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. J. Nanopart. Res., 14: 910.
Sun Y, Shi W, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Zhong M H, Li Y M, Cao Y, Xiao Y, Li W, Yu J, Li Y H, Fan M W, and Yan H M. 2012. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J. Dent. Res., 91: 941–947.
Vijay-Kumar M, Carvalho F A, Aitken J D, Fifadara N H, and Gewirtz A T. 2010. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur. J. Immunol., 12: 3528–3534.
Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert H H, Peters J H, Nesselhut T, and Lorenzen D R. 2009. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm., 1–2: 61–68.
Yan H, Lamm M E, Björling E, and Huang Y T. 2002. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J. Virol., 76: 10972–10979.
Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y, Li Y, Zhou D, He B, Chen Y, Yang Y, Yu J, and Yan H. 2013. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization. Hum. Vaccin. Immunother., 9: 1084–1092.
Yang J, Zhang E, Liu F, Zhang Y, Zhong M, Li Y, Zhou D, Chen Y, Cao Y, Xiao Y, He B, Yang Y, Sun Y, Lu M, and Yan H. 2013. Flagellins of Salmonella Typhi and non-pathogenic Escherichia coli are differentially recognized through NLRC4 pathway in macrophages. J. Innate Immunity: (in press).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Kozlova, D., Sokolova, V., Zhong, M. et al. Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin. Virol. Sin. 29, 33–39 (2014). https://doi.org/10.1007/s12250-014-3379-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12250-014-3379-0
Keywords
- calcium phosphate
- nanoparticle
- immunostimulation
- innate immune system
- flagellin
- adjuvants