Virologica Sinica

, Volume 29, Issue 1, pp 33–39 | Cite as

Calcium phosphate nanoparticles show an effective activation of the innate immune response in vitro and in vivo after functionalization with flagellin

  • Diana Kozlova
  • Viktoriya Sokolova
  • Maohua Zhong
  • Ejuan Zhang
  • Jingyi Yang
  • Wei Li
  • Yi Yang
  • Jan Buer
  • Astrid Maria Westendorf
  • Matthias Epple
  • Huimin Yan
Research Article

Abstract

For subunit vaccines, adjuvants play a key role in shaping the magnitude, persistence and form of targeted antigen-specific immune response. Flagellin is a potent immune activator by bridging innate inflammatory responses and adaptive immunity and an adjuvant candidate for clinical application. Calcium phosphate nanoparticles are efficient carriers for different biomolecules like DNA, RNA, peptides and proteins. Flagellin-functionalized calcium phosphate nanoparticles were prepared and their immunostimulatory effect on the innate immune system, i.e. the cytokine production, was studied. They induced the production of the proinflammatory cytokines IL-8 (Caco-2 cells) and IL-1β (bone marrow-derived macrophages; BMDM) in vitro and IL-6 in vivo after intraperitoneal injection in mice. The immunostimulation was more pronounced than with free flagellin.

Keywords

calcium phosphate nanoparticle immunostimulation innate immune system flagellin adjuvants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amicizia D, Domnich A, Panatto D, Lai P L, Cristina M L, Avio U, and Gasparini R. 2013. Epidemiology of tick-borne encephalitis (TBE) in Europe and its prevention by available vaccines. Hum Vaccin Immunother, 9: 1163–1171.PubMedCrossRefGoogle Scholar
  2. Blutt S E, Miller A D, Salmon S L, Metzger D W, and Conner M E. 2012. IgA is important for clearance and critical for protection from rotavirus infection. Mucosal Immunol, 5: 712–719.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Coffman R L, Sher A, and Seder R A. 2010. Vaccine adjuvants: putting innate immunity to work. Immunity, 4: 492–503.CrossRefGoogle Scholar
  4. Demento S L, Siefert A L, Bandyopadhyay A, Sharp F A, and Fahmy T M. 2011. Pathogen-associated molecular patterns on biomaterials: a paradigm for engineering new vaccines. Trends Biotechnol., 29: 294–306.PubMedCrossRefGoogle Scholar
  5. Dorozhkin S V, and Epple M. 2002. Biological and medical significance of calcium phosphates. Angew. Chem. Int. Ed., 41: 3130–3146.CrossRefGoogle Scholar
  6. Epand R M, and Vogel H J. 1999. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta, 1462: 11–28.PubMedCrossRefGoogle Scholar
  7. Franchi L, Kamada N, Nakamura Y, Burberry A, Kuffa P, Suzuki S, Shaw M H, Kim Y G, and Núñez G. 2012. NLRC4-driven interleukin-1β production discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol., 13: 449–456.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Frisdal E, Lesnik P, Olivier M, Robillard P, Chapman M J, Huby T, Guerin M, and Le Goff W. 2011. Interleukin-6 protects human macrophages from cellular cholesterol accumulation and attenuates the proinflammatory response. J. Biol. Chem., 35: 30926–30936.CrossRefGoogle Scholar
  9. Harandi A M, Medaglini D, and Shattock R J. 2010. Vaccine adjuvants: a priority for vaccine research. Vaccine, 28: 2363–2366.PubMedCrossRefGoogle Scholar
  10. Honko A N, and Mizel S B. 2005. Effects of flagellin on innate and adaptive immunity. Immunol Res, 33: 83–101.PubMedCrossRefGoogle Scholar
  11. Klinman D M, Klaschik S, Sato T, and Tross D. 2009. CpG oligonucleotides as adjuvants for vaccines targeting infectious diseases. Adv. Drug Deliv. Rev., 61: 248–255.PubMedCrossRefGoogle Scholar
  12. Knuschke T, Sokolova V, Rotan O, Wadwa M, Tenbusch M, Hansen W, Staeheli P, Epple M, Buer J, and Westendorf A M. 2013. Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol., 190: 6221–6229.PubMedCrossRefGoogle Scholar
  13. Kozlova D, Chernousova S, Knuschke T, Buer J, Westendorf A M, and Epple M. 2012. Cell targeting by antibody-functionalized calcium phosphate nanoparticles. J. Mater. Chem., 22: 396–404.CrossRefGoogle Scholar
  14. Krishnamachari Y, and Salem A K. 2009. Innovative strategies for co-delivering antigens and CpG oligonucleotides. Adv. Drug Deliv. Rev., 61: 205–217.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Liu F, Yang J, Zhang Y, Zhou D, Chen Y, Gai W, Shi W, Li Q, Tien P, and Yan H. 2010. Recombinant flagellins with partial deletions of the hypervariable domain lose antigenicity but not mucosal adjuvancy. Biochem. Biophys. Res. Commun., 392: 582–587.PubMedCrossRefGoogle Scholar
  16. Mbow M L, De Gregorio E, Valiante N M, and Rappuoli R. 2010. New adjuvants for human vaccines. Curr. Opin. Immunol., 22: 411–416.PubMedCrossRefGoogle Scholar
  17. Miao E A, Andersen-Nissen E, Warren S E, and Aderem A. 2007. TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system. Semin. Immunopathol., 29: 275–288.PubMedCrossRefGoogle Scholar
  18. Mizel S B, and Bates J T. 2010. Flagellin as an adjuvant: cellular mechanisms and potential. J. Immunol., 185: 5677–5682.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Neumann S, Kovtun A, Dietzel I D, Epple M, and Heumann R. 2009. The use of size-defined DNA-functionalized calcium phosphate nanoparticles to minimise intracellular calcium disturbance during transfection. Biomaterials, 30: 6794–6802.PubMedCrossRefGoogle Scholar
  20. Shi W, Li Y H, Liu F, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Han C, Fan M W, and Yan H M. 2012. Flagellin enhances saliva IgA response and protection of anti-caries DNA vaccine. J. Dent. Res., 91: 249–254.PubMedCrossRefGoogle Scholar
  21. Sokolova V, Knuschke T, Buer J, Westendorf A M, and Epple M. 2011. Quantitative determination of the composition of multi-shell calcium phosphate-oligonucleotide nanoparticles and their application for the activation of dendritic cells. Acta Biomater., 7: 4029–4036.PubMedCrossRefGoogle Scholar
  22. Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, and Westendorf A M. 2010. The use of calcium phosphate nanoparticles encapsulating toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials, 31: 5627–5633.PubMedCrossRefGoogle Scholar
  23. Sokolova V, Kozlova D, Knuschke T, Buer J, Westendorf A M, and Epple M. 2013. Mechanism of the uptake of cationic and anionic calcium phosphate nanoparticles by cells. Acta Biomater., 9: 7527–7535.PubMedCrossRefGoogle Scholar
  24. Sokolova V, Rotan O, Klesing J, Nalbant P, Buer J, Knuschke T, Westendorf A M, and Epple M. 2012. Calcium phosphate nanoparticles as versatile carrier for small and large molecules across cell membranes. J. Nanopart. Res., 14: 910.CrossRefGoogle Scholar
  25. Sun Y, Shi W, Yang J Y, Zhou D H, Chen Y Q, Zhang Y, Yang Y, He B X, Zhong M H, Li Y M, Cao Y, Xiao Y, Li W, Yu J, Li Y H, Fan M W, and Yan H M. 2012. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J. Dent. Res., 91: 941–947.PubMedCrossRefGoogle Scholar
  26. Vijay-Kumar M, Carvalho F A, Aitken J D, Fifadara N H, and Gewirtz A T. 2010. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin. Eur. J. Immunol., 12: 3528–3534.CrossRefGoogle Scholar
  27. Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert H H, Peters J H, Nesselhut T, and Lorenzen D R. 2009. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int. J. Pharm., 1–2: 61–68.CrossRefGoogle Scholar
  28. Yan H, Lamm M E, Björling E, and Huang Y T. 2002. Multiple functions of immunoglobulin A in mucosal defense against viruses: an in vitro measles virus model. J. Virol., 76: 10972–10979.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y, Li Y, Zhou D, He B, Chen Y, Yang Y, Yu J, and Yan H. 2013. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization. Hum. Vaccin. Immunother., 9: 1084–1092.PubMedCrossRefGoogle Scholar
  30. Yang J, Zhang E, Liu F, Zhang Y, Zhong M, Li Y, Zhou D, Chen Y, Cao Y, Xiao Y, He B, Yang Y, Sun Y, Lu M, and Yan H. 2013. Flagellins of Salmonella Typhi and non-pathogenic Escherichia coli are differentially recognized through NLRC4 pathway in macrophages. J. Innate Immunity: (in press).Google Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Diana Kozlova
    • 1
  • Viktoriya Sokolova
    • 1
  • Maohua Zhong
    • 2
  • Ejuan Zhang
    • 2
  • Jingyi Yang
    • 2
  • Wei Li
    • 2
  • Yi Yang
    • 2
  • Jan Buer
    • 3
  • Astrid Maria Westendorf
    • 3
  • Matthias Epple
    • 1
  • Huimin Yan
    • 2
  1. 1.Institute of Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE)University of Duisburg-EssenEssenGermany
  2. 2.Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  3. 3.Institute of Medical Microbiology, University Hospital EssenUniversity of Duisburg-EssenEssenGermany

Personalised recommendations