Skip to main content
Log in

Snapshots of a viral RNA polymerase switching gears from transcription initiation to elongation

  • Review
  • Published:
Virologica Sinica

Abstract

During transcription initiation, RNA polymerase binds tightly to the promoter DNA defining the start of transcription, transcribes comparatively slowly, and frequently releases short transcripts (3–8 nucleotides) in a process called abortive cycling. Transitioning to elongation, the second phase of transcription, the polymerase dissociates from the promoter while RNA synthesis continues. Elongation is characterized by higher rates of transcription and tight binding to the RNA transcript. The RNA polymerase from enterophage T7 (T7 RNAP) has been used as a model to understand the mechanism of transcription in general, and the transition from initiation to elongation specifically. This single-subunit enzyme undergoes dramatic conformational changes during this transition to support the changing requirements of nucleic acid interactions while continuously maintaining polymerase function. Crystal structures, available of multiple stages of the initiation complex and of the elongation complex, combined with biochemical and biophysical data, offer molecular detail of the transition. Some of the crystal structures contain a variant of T7 RNAP where proline 266 is substituted by leucine. This variant shows less abortive products and altered timing of transition, and is a valuable tool to study these processes. The structural transitions from early to late initiation are well understood and are consistent with solution data. The timing of events and the structural intermediates in the transition from late initiation to elongation are less well understood, but the available data allows one to formulate testable models of the transition to guide further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandwar R P, Ma N, Emanuel S A, Anikin M, Vassylyev D G, Patel S S, and McAllister W T. 2007. The transition to an elongation complex by T7 RNA polymerase is a multistep process. J Biol Chem, 31: 22879–22886.

    Article  Google Scholar 

  • Cheetham G M, and Steitz T A. 1999. Structure of a transcribing T7 RNA polymerase initiation complex. Science, 286(5448):2305–2309.

    Article  CAS  PubMed  Google Scholar 

  • Daube S S, and von Hippel P H. 1992. Functional transcription elongation complexes from synthetic RNA-DNA bubble duplexes. Science, 258(5086):1320–1324.

    Article  CAS  PubMed  Google Scholar 

  • Durniak K J, Bailey S, and Steitz T A. 2008. The structure of a transcribing T7 RNA polymerase in transition from initiation to elongation. Science, 322(5901):553–557.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gong P, Esposito E A, and Martin C T. 2004. Initial bubble collapse plays a key role in the transition to elongation in T7 RNA polymerase. J Biol Chem. 279(43): 44277–44285.

    Article  CAS  PubMed  Google Scholar 

  • Guillerez J, Lopez P J, Proux F, Launay H, and Dreyfus M. 2005. A mutation in T7 RNA polymerase that facilitates promoter clearance. Proc Natl Acad Sci U S A, 102(17):5958–5963.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, and Martin C T. 2009. Transcription elongation complex stability: the topological lock. J Biol Chem, 284(52):36262–36270.

    Article  CAS  PubMed  Google Scholar 

  • Martin C T, Esposito E A, Theis K, and Gong P. 2005. Structure and function in promoter escape by T7 RNA polymerase. Prog Nucleic Acid Res Mol Biol, 80: 323–347.

    Article  CAS  PubMed  Google Scholar 

  • Milligan J F, Groebe D R, Witherell G W, and Uhlenbeck O C. 1987. Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res, 15(21): 8783–8798.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramírez-Tapia L E, and Martin C T. 2012. New Insights into the Mechanism of Initial Transcription. The T7 RNA polymerase mutant P266L transitions to elongation at longer RNA lengths than wild type. J Biol Chem, 287(44): 37352–37361.

    Article  PubMed  Google Scholar 

  • Ritacco C J, Kamtekar S, Wang J, and Steitz T A. 2013. Crystal structure of an intermediate of rotating dimers within the synaptic tetramer of the G-segment invertase. Nucleic Acids Res, 41(4):2673–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwinghammer K, Cheung A C, Morozov Y I, Agaronyan K, Temiakov D, and Cramer P. 2013. Structure of human mitochondrial RNA polymerase elongation complex. Nat Struct Mol Biol. 20(11):1298–1303.

    Article  CAS  PubMed  Google Scholar 

  • Steitz T A. 2009. The structural changes of T7 RNA polymerase from transcription initiation to elongation. Curr Opin Struct Biol. 19(6):683–690.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Studier F W, and Moffatt B A. 1986. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol, 189(1): 113–130.

    Article  CAS  PubMed  Google Scholar 

  • Tahirov T H, Temiakov D, Anikin M, Patlan V, McAllister W T, Vassylyev D G, and Yokoyama S. 2002. Structure of a T7 RNA polymerase elongation complex at 2.9 Å resolution. Nature, 420(6911):43–50.

    Article  CAS  PubMed  Google Scholar 

  • Tang G Q, Roy R, Bandwar R P, Ha T, and Patel S S. 2009. Real-time observation of the transition from transcription initiation to elongation of the RNA polymerase. Proc Natl Acad Sci U S A. 106(52):22175–22180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Theis K, Gong P, and Martin C T. 2004. Topological and conformational analysis of the initiation and elongation complex of t7 RNA polymerase suggests a new twist. Biochemistry, 43(40):12709–12715.

    Article  CAS  PubMed  Google Scholar 

  • Turingan R S, Liu C, Hawkins M E, and Martin C T. 2007. Structural confirmation of a bent and open model for the initiation complex of T7 RNA polymerase. Biochemistry, 46(7):1714–1723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vahia A V, and Martin C T. 2011. Direct tests of the energetic basis of abortive cycling in transcription. Biochemistry, 50(32):7015–7022.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yin Y W, and Steitz T A. 2002. Structural basis for the transition from initiation to elongation transcription in T7 RNA polymerase. Science, 298(5597):1387–1395

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karsten Theis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theis, K. Snapshots of a viral RNA polymerase switching gears from transcription initiation to elongation. Virol. Sin. 28, 337–344 (2013). https://doi.org/10.1007/s12250-013-3397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12250-013-3397-3

Keywords

Navigation