Virologica Sinica

, Volume 28, Issue 5, pp 309–311 | Cite as

Study of the dynamics of Microcystis aeruginosa and its cyanophage in East Lake using quantitative PCR

  • Han Xia
  • Meiniang Wang
  • Xingyi Ge
  • Yongquan Wu
  • Xinglou Yang
  • Yuji Zhang
  • Tianxian Li
  • Zhengli Shi
Letter

Keywords

Chemical Oxygen Demand Total Phosphorus Environmental Microbiology VIROLOGICA SINICA Wuhan Institute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmichael W W, Azevedo S, An J S, Molica R, Jochimsen E M, Lau S, Rinehart K L, Shaw G R, and Eaglesham G K. 2001. Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environmental health perspectives, 109: 663.PubMedCrossRefGoogle Scholar
  2. Suttle C A, and Chen F. 1992. Mechanisms and rates of decay of marine viruses in seawater. Applied and Environmental Microbiology, 58: 3721–3729.PubMedGoogle Scholar
  3. Takashima Y, Yoshida T, Yoshida M, Shirai Y, Tomaru Y, Takao Y, Hiroishi S, and Nagasaki K. 2007. Development and application of quantitative detection of cyanophages phylogenetically related to cyanophage Ma-LMM01 infecting Microcystis aeruginosa in fresh water. Microbes and Environments, 22: 207–213.CrossRefGoogle Scholar
  4. Thurber R V, Haynes M, Breitbart M, Wegley L, and Rohwer F. 2009. Laboratory procedures to generate viral metagenomes. Nature Protocols, 4: 470–483.PubMedCrossRefGoogle Scholar
  5. Tucker S, and Pollard P. 2005. Identification of cyanophage Ma-LBP and infection of the cyanobacterium Microcystis aeruginosa from an Australian subtropical lake by the virus. Applied and environmental microbiology, 71: 629–635.PubMedCrossRefGoogle Scholar
  6. Yoshida M, Yoshida T, Yoshida-Takashima Y, Kashima A, and Hiroishi S. 2010. Real-time PCR detection of host-mediated cyanophage gene transcripts during infection of a natural Microcystis aeruginosa population. Microbes and environments, 25: 211–215.PubMedCrossRefGoogle Scholar
  7. Yoshida M, Yoshida T, Satomi M, Takashima Y, Hosoda N, and Hiroishi S. 2008. Intra specific phenotypic and genotypic variation in toxic — cyanobacterial Microcystis strains. Journal of applied microbiology, 105: 407–415.PubMedCrossRefGoogle Scholar
  8. Yoshida M, Yoshida T, Kashima A, Takashima Y, Hosoda N, Nagasaki K, and Hiroishi S. 2008. Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Applied and environmental microbiology, 74: 3269–3273.PubMedCrossRefGoogle Scholar
  9. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, and Nagasaki K. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol, 72: 1239–1247.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Han Xia
    • 1
  • Meiniang Wang
    • 2
  • Xingyi Ge
    • 2
  • Yongquan Wu
    • 2
  • Xinglou Yang
    • 2
  • Yuji Zhang
    • 2
  • Tianxian Li
    • 1
  • Zhengli Shi
    • 2
  1. 1.Virus Resource and Bioinformatics Center, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations