Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China

Abstract

East Lake (Lake Donghu), located in Wuhan, China, is a typical city freshwater lake that has been experiencing eutrophic conditions and algal blooming during recent years. Marine and fresh water are considered to contain a large number of viruses. However, little is known about their genetic diversity because of the limited techniques for culturing viruses. In this study, we conducted a viral metagenomic analysis using a high-throughput sequencing technique with samples collected from East Lake in Spring, Summer, Autumn, and Winter. The libraries from four samples each generated 234,669, 71,837, 12,820, and 34,236 contigs (> 90 bp each), respectively. The genetic structure of the viral community revealed a high genetic diversity covering 23 viral families, with the majority of contigs homologous to DNA viruses, including members of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and Microviridae, which infect bacteria or algae, and members of Circoviridae, which infect invertebrates and vertebrates. The highest viral genetic diversity occurred in samples collected in August, then December and June, and the least diversity in March. Most contigs have low-sequence identities with known viruses. PCR detection targeting the conserved sequences of genes (g20, psbA, psbD, and DNApol) of cyanophages further confirmed that there are novel cyanophages in the East Lake. Our viral metagenomic data provide the first preliminary understanding of the virome in one freshwater lake in China and would be helpful for novel virus discovery and the control of algal blooming in the future.

This is a preview of subscription content, access via your institution.

References

  1. Abedon S T. 2009. Phage evolution and ecology. Adv Appl Microbiol, 67: 1–45.

    PubMed  Article  CAS  Google Scholar 

  2. Ackermann H W. 1998. Tailed bacteriophages: the order caudovirales. Adv Virus Res, 51: 135–201.

    PubMed  Article  CAS  Google Scholar 

  3. Angly F E, Felts B, Breitbart M, Salamon P, Edwards R A, Carlson C, Chan A M, Haynes M, Kelley S, Liu H, Mahaffy J M, Mueller J E, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle C A, and Rohwer F. 2006. The marine viromes of four oceanic regions. Plos Biology, 4: 2121–2131.

    Article  CAS  Google Scholar 

  4. Benko M, and Harrach B. 2003. Molecular evolution of adenoviruses. Curr Top Microbiol Immunol, 272: 3–35.

    PubMed  Article  CAS  Google Scholar 

  5. Cantalupo P G, Calgua B, Zhao G Y, Hundesa A, Wier A D, Katz J P, Grabe M, Hendrix R W, Girones R, Wang D, and Pipas J M. 2011. Raw Sewage Harbors Diverse Viral Populations. Mbio, 2(5): e00180–11.

    PubMed  Article  Google Scholar 

  6. Carmichael W W. 2001. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess, 7: 1393–1407.

    Article  Google Scholar 

  7. Chenard C, and Suttle C A. 2008. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol, 74: 5317–5324.

    PubMed  Article  CAS  Google Scholar 

  8. Claverie J M, Abergel C, and Ogata H. 2009. Mimivirus. Curr Top Microbiol Immunol, 328: 89–121.

    PubMed  Article  CAS  Google Scholar 

  9. Davison A J. 2002. Evolution of the herpesviruses. Vet Microbiol, 86: 69–88.

    PubMed  Article  CAS  Google Scholar 

  10. Delwart E, and Li L L. 2012. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res, 164: 114–121.

    PubMed  Article  CAS  Google Scholar 

  11. Djikeng A, Kuzmickas R, Anderson N G, and Spiro D J. 2009. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One, 4: e7264.

    PubMed  Article  Google Scholar 

  12. Escobedo-Bonilla C M, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert M B, and Nauwynck H J. 2008. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis, 31: 1–18.

    PubMed  Article  CAS  Google Scholar 

  13. Federici B A, Bideshi D K, Tan Y, Spears T, and Bigot Y. 2009. Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. Curr Top Microbiol Immunol, 328: 171–196.

    PubMed  Article  CAS  Google Scholar 

  14. Fischer U R, and Velimirov B. 2002. High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol, 27: 1–12.

    Article  Google Scholar 

  15. Fitzgerald L A, Graves M V, Li X, Feldblyum T, Hartigan J, and Van Etten J L. 2007. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology, 358: 459–471.

    PubMed  Article  CAS  Google Scholar 

  16. Gao E B, Gui J F, and Zhang Q Y. 2012. A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J Virol, 86: 236–245.

    PubMed  Article  CAS  Google Scholar 

  17. Ge X, Li Y, Yang X, Zhang H, Zhou P, Zhang Y, and Shi Z. 2012. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol, 86: 4620–4630.

    PubMed  Article  CAS  Google Scholar 

  18. Grigoras I, Timchenko T, Grande-Perez A, Katul L, Vetten H J, and Gronenborn B. 2012. High variability and rapid evolution of a nanovirus. J Virol, 84: 9105–9117.

    Article  Google Scholar 

  19. Hueffer K, and Parrish C R. 2003. Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol, 6: 392–398.

    PubMed  Article  CAS  Google Scholar 

  20. Hughes A L, Irausquin S, and Friedman R. 2010. The evolutionary biology of poxviruses. Infect Genet Evol, 10: 50–59.

    PubMed  Article  CAS  Google Scholar 

  21. Kelly B J, King L A, and Possee R D. 2007. Introduction to baculovirus molecular biology. Methods Mol Biol, 388: 25–54.

    PubMed  Article  CAS  Google Scholar 

  22. Labrie S J, Frois-Moniz K, Osburne M S, Kelly L, Roggensack S E, Sullivan M B, Gearin G, Zeng Q, Fitzgerald M, Henn M R, and Chisholm S W. 2013. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol, 15: 1356–1376.

    PubMed  Article  CAS  Google Scholar 

  23. Larsen J B, Larsen A, Bratbak G, and Sandaa R A. 2008. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol, 74: 3048–3057.

    PubMed  Article  CAS  Google Scholar 

  24. Liu Y M, Zhang Q Y, and Yuan X P. 2005. Abundance and diversity of virioplankton in Lake Donghu, Wuhan. Acta Hydrobiology Sinica 29: 1–6.

    Google Scholar 

  25. Liu Y M, Zhang Q Y, Yuan X P, Li Z Q, and Gui J F. 2006. Seasonal variation of virioplankton in a eutrophic shallow lake. Hydrobiologia, 560: 323–334.

    Article  Google Scholar 

  26. Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, and Alcami A. 2009. High diversity of the viral community from an Antarctic lake. Science, 326: 858–861.

    PubMed  Article  CAS  Google Scholar 

  27. Lu J, Chen F, and Hodson R E. 2001. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol, 67: 3285–3290.

    PubMed  Article  CAS  Google Scholar 

  28. Maranger R, and Bird D F. 1995. Viral Abundance in Aquatic Systems — a Comparison between Marine and Fresh-Waters. Mar Ecol Prog Ser, 121: 217–226.

    Article  Google Scholar 

  29. Marston M F, Pierciey F J, Jr., Shepard A, Gearin G, Qi J, Yandava C, Schuster S C, Henn M R, and Martiny J B. 2012. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci U S A, 109: 4544–4549.

    PubMed  Article  CAS  Google Scholar 

  30. Marvin D A. 1990. Model-Building Studies of Inovirus — Genetic Variations on a Geometric Theme. Int J Biol Macromol, 12: 125–138.

    PubMed  Article  CAS  Google Scholar 

  31. Muhire B, Martin D P, Brown J K, Navas-Castillo J, Moriones E, Zerbini F M, Rivera-Bustamante R, Malathi V G, Briddon R W, and Varsani A. 2013. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol, 158(6):1411–24.

    PubMed  Article  CAS  Google Scholar 

  32. Peng L, Liu Y, Chen W, Liu L, Kent M, and Song L. 2010. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotoxicol Environ Saf, 73: 1804–1811.

    PubMed  Article  CAS  Google Scholar 

  33. Phan T G, Kapusinszky B, Wang C, Rose R K, Lipton H L, and Delwart E L. 2011. The fecal viral flora of wild rodents. PLoS Pathog, 7: e1002218.

    PubMed  Article  CAS  Google Scholar 

  34. Prangishvili D, and Garrett R A. 2004. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans, 32: 204–208.

    PubMed  Article  CAS  Google Scholar 

  35. Proctor L M, and Fuhrman J A. 1990. Viral Mortality of Marine-Bacteria and Cyanobacteria. Nature, 343: 60–62.

    Article  Google Scholar 

  36. Qin B. 2002. Approaches to mechanisms and control of eutrophication of shallow lakes. in the middle and lower reaches of the Yangze River. Hupo Kexue, 14: 193–202.

    CAS  Google Scholar 

  37. Raytcheva D A, Haase-Pettingell C, Piret J M, and King J A. 2011. Intracellular Assembly of Cyanophage Syn5 Proceeds through a Scaffold-Containing Procapsid. J Virol, 85: 2406–2415.

    PubMed  Article  CAS  Google Scholar 

  38. Roux S, Krupovic M, Poulet A, Debroas D, and Enault F. 2012. Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads. Plos One, 7.

  39. Short C M, and Suttle C A. 2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol, 71: 480–486.

    PubMed  Article  CAS  Google Scholar 

  40. Song L, Chen W, Peng L, Wan N, Gan N, and Zhang X. 2007. Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res, 41: 2853–2864.

    PubMed  Article  CAS  Google Scholar 

  41. Sullivan M B, Waterbury J B, and Chisholm S W. 2003. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 424: 1047–1051.

    PubMed  Article  CAS  Google Scholar 

  42. Sullivan M B, Lindell D, Lee J A, Thompson L R, Bielawski J P, and Chisholm S W. 2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol, 4: e234.

    PubMed  Article  Google Scholar 

  43. Sullivan M B, Coleman M L, Quinlivan V, Rosenkrantz J E, DeFrancesco A S, Tan G, Fu R, Lee J A, Waterbury J B, Bielawski J P, and Chisholm S W. 2008. Portal protein diversity and phage ecology. Environ Microbiol, 10: 2810–2823.

    PubMed  Article  CAS  Google Scholar 

  44. Sullivan M B, Huang K H, Ignacio-Espinoza J C, Berlin A M, Kelly L, Weigele P R, DeFrancesco A S, Kern S E, Thompson L R, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne M S, Henn M R, and Chisholm S W. 2010. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol, 12: 3035–3056.

    PubMed  Article  CAS  Google Scholar 

  45. Suttle C A. 2005. Viruses in the sea. Nature, 437: 356–361.

    PubMed  Article  CAS  Google Scholar 

  46. Suttle C A, and Chan A M. 1994. Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus Spp. Appl Environ Microbiol, 60: 3167–3174.

    PubMed  CAS  Google Scholar 

  47. Thurber R V, Haynes M, Breitbart M, Wegley L, and Rohwer F. 2009. Laboratory procedures to generate viral metagenomes. Nature Protocols, 4: 470–483.

    PubMed  Article  CAS  Google Scholar 

  48. Turnbull M, and Webb B. 2002. Perspectives on polydnavirus origins and evolution. Adv Virus Res, 58: 203–254.

    PubMed  Article  CAS  Google Scholar 

  49. Van Duin J T N. 2006. The bacteriophages, 2nd ed. Oxford University Press, New York.

    Google Scholar 

  50. Waltzek T B, Kelley G O, Alfaro M E, Kurobe T, Davison A J, and Hedrick R P. 2009. Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ, 84: 179–194.

    PubMed  Article  CAS  Google Scholar 

  51. Wang K, and Chen F. 2004. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay. Aquat Microb Ecol, 34: 105–116.

    Article  Google Scholar 

  52. Weinbauer M G, and Hofle M G. 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol, 64: 431–438.

    PubMed  CAS  Google Scholar 

  53. Williams T, Barbosa-Solomieu V, and Chinchar V G. 2005. A decade of advances in iridovirus research. Adv Virus Res, 65: 173–248.

    PubMed  Article  CAS  Google Scholar 

  54. Williamson S J, Rusch D B, Yooseph S, Halpern A L, Heidelberg K B, Glass J I, Andrews-Pfannkoch C, Fadrosh D, Miller C S, Sutton G, Frazier M, and Venter J C. 2008. The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples. Plos One, 3(1): e1456.

    PubMed  Article  Google Scholar 

  55. Wilson. W H, Etten. J L V, Schroeder. D S, Nagasaki. K, Brussaard. C, Delaroque. N, Bratbak. G, and Suttle C. 2005. Phycodnaviridae, vol. Eighth Report of the International Committee of the Taxonomy of Viruses. Elsevier Academic Press, San Diego.

    Google Scholar 

  56. Yamada T, Onimatsu H, and Van Etten J L. 2006. Chlorella viruses. Adv Virus Res, 66: 293–336.

    PubMed  Article  CAS  Google Scholar 

  57. Yanai-Balser G M, Duncan G A, Eudy J D, Wang D, Li X, Agarkova I V, Dunigan D D, and Van Etten J L. 2010. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol, 84: 532–542.

    PubMed  Article  CAS  Google Scholar 

  58. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, and Nagasaki K. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol, 72: 1239–1247.

    PubMed  Article  CAS  Google Scholar 

  59. Zhang T, Breitbart M, Lee W H, Run J Q, Wei C L, Soh S W, Hibberd M L, Liu E T, Rohwer F, and Ruan Y. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol, 4: e3.

    PubMed  Article  Google Scholar 

  60. Zhong Y, Chen F, Wilhelm S W, Poorvin L, and Hodson R E. 2002. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol, 68: 1576–1584.

    PubMed  Article  CAS  Google Scholar 

  61. Zhou J Z C, Wang L L. 2009. Study on characteristic of algae growth in Tai Lake based on nonlinear dynamic analysis. Acta Hydrobiologica Sinica, 33(5): 931–936.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhengli Shi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ge, X., Wu, Y., Wang, M. et al. Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China. Virol. Sin. 28, 280–290 (2013). https://doi.org/10.1007/s12250-013-3365-y

Download citation

Keywords

  • Viral metagenomics
  • East Lake
  • Solexa high-throughput sequencing
  • High-throughput sequencing (HTS)
  • Cyanophage