Virologica Sinica

, Volume 28, Issue 5, pp 280–290 | Cite as

Viral metagenomics analysis of planktonic viruses in East Lake, Wuhan, China

  • Xingyi Ge
  • Yongquan Wu
  • Meiniang Wang
  • Jun Wang
  • Lijun Wu
  • Xinglou Yang
  • Yuji Zhang
  • Zhengli ShiEmail author
Research Article


East Lake (Lake Donghu), located in Wuhan, China, is a typical city freshwater lake that has been experiencing eutrophic conditions and algal blooming during recent years. Marine and fresh water are considered to contain a large number of viruses. However, little is known about their genetic diversity because of the limited techniques for culturing viruses. In this study, we conducted a viral metagenomic analysis using a high-throughput sequencing technique with samples collected from East Lake in Spring, Summer, Autumn, and Winter. The libraries from four samples each generated 234,669, 71,837, 12,820, and 34,236 contigs (> 90 bp each), respectively. The genetic structure of the viral community revealed a high genetic diversity covering 23 viral families, with the majority of contigs homologous to DNA viruses, including members of Myoviridae, Podoviridae, Siphoviridae, Phycodnaviridae, and Microviridae, which infect bacteria or algae, and members of Circoviridae, which infect invertebrates and vertebrates. The highest viral genetic diversity occurred in samples collected in August, then December and June, and the least diversity in March. Most contigs have low-sequence identities with known viruses. PCR detection targeting the conserved sequences of genes (g20, psbA, psbD, and DNApol) of cyanophages further confirmed that there are novel cyanophages in the East Lake. Our viral metagenomic data provide the first preliminary understanding of the virome in one freshwater lake in China and would be helpful for novel virus discovery and the control of algal blooming in the future.


Viral metagenomics East Lake Solexa high-throughput sequencing High-throughput sequencing (HTS) Cyanophage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abedon S T. 2009. Phage evolution and ecology. Adv Appl Microbiol, 67: 1–45.PubMedCrossRefGoogle Scholar
  2. Ackermann H W. 1998. Tailed bacteriophages: the order caudovirales. Adv Virus Res, 51: 135–201.PubMedCrossRefGoogle Scholar
  3. Angly F E, Felts B, Breitbart M, Salamon P, Edwards R A, Carlson C, Chan A M, Haynes M, Kelley S, Liu H, Mahaffy J M, Mueller J E, Nulton J, Olson R, Parsons R, Rayhawk S, Suttle C A, and Rohwer F. 2006. The marine viromes of four oceanic regions. Plos Biology, 4: 2121–2131.CrossRefGoogle Scholar
  4. Benko M, and Harrach B. 2003. Molecular evolution of adenoviruses. Curr Top Microbiol Immunol, 272: 3–35.PubMedCrossRefGoogle Scholar
  5. Cantalupo P G, Calgua B, Zhao G Y, Hundesa A, Wier A D, Katz J P, Grabe M, Hendrix R W, Girones R, Wang D, and Pipas J M. 2011. Raw Sewage Harbors Diverse Viral Populations. Mbio, 2(5): e00180–11.PubMedCrossRefGoogle Scholar
  6. Carmichael W W. 2001. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess, 7: 1393–1407.CrossRefGoogle Scholar
  7. Chenard C, and Suttle C A. 2008. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol, 74: 5317–5324.PubMedCrossRefGoogle Scholar
  8. Claverie J M, Abergel C, and Ogata H. 2009. Mimivirus. Curr Top Microbiol Immunol, 328: 89–121.PubMedCrossRefGoogle Scholar
  9. Davison A J. 2002. Evolution of the herpesviruses. Vet Microbiol, 86: 69–88.PubMedCrossRefGoogle Scholar
  10. Delwart E, and Li L L. 2012. Rapidly expanding genetic diversity and host range of the Circoviridae viral family and other Rep encoding small circular ssDNA genomes. Virus Res, 164: 114–121.PubMedCrossRefGoogle Scholar
  11. Djikeng A, Kuzmickas R, Anderson N G, and Spiro D J. 2009. Metagenomic analysis of RNA viruses in a fresh water lake. PLoS One, 4: e7264.PubMedCrossRefGoogle Scholar
  12. Escobedo-Bonilla C M, Alday-Sanz V, Wille M, Sorgeloos P, Pensaert M B, and Nauwynck H J. 2008. A review on the morphology, molecular characterization, morphogenesis and pathogenesis of white spot syndrome virus. J Fish Dis, 31: 1–18.PubMedCrossRefGoogle Scholar
  13. Federici B A, Bideshi D K, Tan Y, Spears T, and Bigot Y. 2009. Ascoviruses: superb manipulators of apoptosis for viral replication and transmission. Curr Top Microbiol Immunol, 328: 171–196.PubMedCrossRefGoogle Scholar
  14. Fischer U R, and Velimirov B. 2002. High control of bacterial production by viruses in a eutrophic oxbow lake. Aquat Microb Ecol, 27: 1–12.CrossRefGoogle Scholar
  15. Fitzgerald L A, Graves M V, Li X, Feldblyum T, Hartigan J, and Van Etten J L. 2007. Sequence and annotation of the 314-kb MT325 and the 321-kb FR483 viruses that infect Chlorella Pbi. Virology, 358: 459–471.PubMedCrossRefGoogle Scholar
  16. Gao E B, Gui J F, and Zhang Q Y. 2012. A novel cyanophage with a cyanobacterial nonbleaching protein A gene in the genome. J Virol, 86: 236–245.PubMedCrossRefGoogle Scholar
  17. Ge X, Li Y, Yang X, Zhang H, Zhou P, Zhang Y, and Shi Z. 2012. Metagenomic analysis of viruses from bat fecal samples reveals many novel viruses in insectivorous bats in China. J Virol, 86: 4620–4630.PubMedCrossRefGoogle Scholar
  18. Grigoras I, Timchenko T, Grande-Perez A, Katul L, Vetten H J, and Gronenborn B. 2012. High variability and rapid evolution of a nanovirus. J Virol, 84: 9105–9117.CrossRefGoogle Scholar
  19. Hueffer K, and Parrish C R. 2003. Parvovirus host range, cell tropism and evolution. Curr Opin Microbiol, 6: 392–398.PubMedCrossRefGoogle Scholar
  20. Hughes A L, Irausquin S, and Friedman R. 2010. The evolutionary biology of poxviruses. Infect Genet Evol, 10: 50–59.PubMedCrossRefGoogle Scholar
  21. Kelly B J, King L A, and Possee R D. 2007. Introduction to baculovirus molecular biology. Methods Mol Biol, 388: 25–54.PubMedCrossRefGoogle Scholar
  22. Labrie S J, Frois-Moniz K, Osburne M S, Kelly L, Roggensack S E, Sullivan M B, Gearin G, Zeng Q, Fitzgerald M, Henn M R, and Chisholm S W. 2013. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ Microbiol, 15: 1356–1376.PubMedCrossRefGoogle Scholar
  23. Larsen J B, Larsen A, Bratbak G, and Sandaa R A. 2008. Phylogenetic analysis of members of the Phycodnaviridae virus family, using amplified fragments of the major capsid protein gene. Appl Environ Microbiol, 74: 3048–3057.PubMedCrossRefGoogle Scholar
  24. Liu Y M, Zhang Q Y, and Yuan X P. 2005. Abundance and diversity of virioplankton in Lake Donghu, Wuhan. Acta Hydrobiology Sinica 29: 1–6.Google Scholar
  25. Liu Y M, Zhang Q Y, Yuan X P, Li Z Q, and Gui J F. 2006. Seasonal variation of virioplankton in a eutrophic shallow lake. Hydrobiologia, 560: 323–334.CrossRefGoogle Scholar
  26. Lopez-Bueno A, Tamames J, Velazquez D, Moya A, Quesada A, and Alcami A. 2009. High diversity of the viral community from an Antarctic lake. Science, 326: 858–861.PubMedCrossRefGoogle Scholar
  27. Lu J, Chen F, and Hodson R E. 2001. Distribution, isolation, host specificity, and diversity of cyanophages infecting marine Synechococcus spp. in river estuaries. Appl Environ Microbiol, 67: 3285–3290.PubMedCrossRefGoogle Scholar
  28. Maranger R, and Bird D F. 1995. Viral Abundance in Aquatic Systems — a Comparison between Marine and Fresh-Waters. Mar Ecol Prog Ser, 121: 217–226.CrossRefGoogle Scholar
  29. Marston M F, Pierciey F J, Jr., Shepard A, Gearin G, Qi J, Yandava C, Schuster S C, Henn M R, and Martiny J B. 2012. Rapid diversification of coevolving marine Synechococcus and a virus. Proc Natl Acad Sci U S A, 109: 4544–4549.PubMedCrossRefGoogle Scholar
  30. Marvin D A. 1990. Model-Building Studies of Inovirus — Genetic Variations on a Geometric Theme. Int J Biol Macromol, 12: 125–138.PubMedCrossRefGoogle Scholar
  31. Muhire B, Martin D P, Brown J K, Navas-Castillo J, Moriones E, Zerbini F M, Rivera-Bustamante R, Malathi V G, Briddon R W, and Varsani A. 2013. A genome-wide pairwise-identity-based proposal for the classification of viruses in the genus Mastrevirus (family Geminiviridae). Arch Virol, 158(6):1411–24.PubMedCrossRefGoogle Scholar
  32. Peng L, Liu Y, Chen W, Liu L, Kent M, and Song L. 2010. Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes: significance for freshwater aquacultures. Ecotoxicol Environ Saf, 73: 1804–1811.PubMedCrossRefGoogle Scholar
  33. Phan T G, Kapusinszky B, Wang C, Rose R K, Lipton H L, and Delwart E L. 2011. The fecal viral flora of wild rodents. PLoS Pathog, 7: e1002218.PubMedCrossRefGoogle Scholar
  34. Prangishvili D, and Garrett R A. 2004. Exceptionally diverse morphotypes and genomes of crenarchaeal hyperthermophilic viruses. Biochem Soc Trans, 32: 204–208.PubMedCrossRefGoogle Scholar
  35. Proctor L M, and Fuhrman J A. 1990. Viral Mortality of Marine-Bacteria and Cyanobacteria. Nature, 343: 60–62.CrossRefGoogle Scholar
  36. Qin B. 2002. Approaches to mechanisms and control of eutrophication of shallow lakes. in the middle and lower reaches of the Yangze River. Hupo Kexue, 14: 193–202.Google Scholar
  37. Raytcheva D A, Haase-Pettingell C, Piret J M, and King J A. 2011. Intracellular Assembly of Cyanophage Syn5 Proceeds through a Scaffold-Containing Procapsid. J Virol, 85: 2406–2415.PubMedCrossRefGoogle Scholar
  38. Roux S, Krupovic M, Poulet A, Debroas D, and Enault F. 2012. Evolution and Diversity of the Microviridae Viral Family through a Collection of 81 New Complete Genomes Assembled from Virome Reads. Plos One, 7.Google Scholar
  39. Short C M, and Suttle C A. 2005. Nearly identical bacteriophage structural gene sequences are widely distributed in both marine and freshwater environments. Appl Environ Microbiol, 71: 480–486.PubMedCrossRefGoogle Scholar
  40. Song L, Chen W, Peng L, Wan N, Gan N, and Zhang X. 2007. Distribution and bioaccumulation of microcystins in water columns: a systematic investigation into the environmental fate and the risks associated with microcystins in Meiliang Bay, Lake Taihu. Water Res, 41: 2853–2864.PubMedCrossRefGoogle Scholar
  41. Sullivan M B, Waterbury J B, and Chisholm S W. 2003. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature, 424: 1047–1051.PubMedCrossRefGoogle Scholar
  42. Sullivan M B, Lindell D, Lee J A, Thompson L R, Bielawski J P, and Chisholm S W. 2006. Prevalence and evolution of core photosystem II genes in marine cyanobacterial viruses and their hosts. PLoS Biol, 4: e234.PubMedCrossRefGoogle Scholar
  43. Sullivan M B, Coleman M L, Quinlivan V, Rosenkrantz J E, DeFrancesco A S, Tan G, Fu R, Lee J A, Waterbury J B, Bielawski J P, and Chisholm S W. 2008. Portal protein diversity and phage ecology. Environ Microbiol, 10: 2810–2823.PubMedCrossRefGoogle Scholar
  44. Sullivan M B, Huang K H, Ignacio-Espinoza J C, Berlin A M, Kelly L, Weigele P R, DeFrancesco A S, Kern S E, Thompson L R, Young S, Yandava C, Fu R, Krastins B, Chase M, Sarracino D, Osburne M S, Henn M R, and Chisholm S W. 2010. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol, 12: 3035–3056.PubMedCrossRefGoogle Scholar
  45. Suttle C A. 2005. Viruses in the sea. Nature, 437: 356–361.PubMedCrossRefGoogle Scholar
  46. Suttle C A, and Chan A M. 1994. Dynamics and Distribution of Cyanophages and Their Effect on Marine Synechococcus Spp. Appl Environ Microbiol, 60: 3167–3174.PubMedGoogle Scholar
  47. Thurber R V, Haynes M, Breitbart M, Wegley L, and Rohwer F. 2009. Laboratory procedures to generate viral metagenomes. Nature Protocols, 4: 470–483.PubMedCrossRefGoogle Scholar
  48. Turnbull M, and Webb B. 2002. Perspectives on polydnavirus origins and evolution. Adv Virus Res, 58: 203–254.PubMedCrossRefGoogle Scholar
  49. Van Duin J T N. 2006. The bacteriophages, 2nd ed. Oxford University Press, New York.Google Scholar
  50. Waltzek T B, Kelley G O, Alfaro M E, Kurobe T, Davison A J, and Hedrick R P. 2009. Phylogenetic relationships in the family Alloherpesviridae. Dis Aquat Organ, 84: 179–194.PubMedCrossRefGoogle Scholar
  51. Wang K, and Chen F. 2004. Genetic diversity and population dynamics of cyanophage communities in the Chesapeake Bay. Aquat Microb Ecol, 34: 105–116.CrossRefGoogle Scholar
  52. Weinbauer M G, and Hofle M G. 1998. Significance of viral lysis and flagellate grazing as factors controlling bacterioplankton production in a eutrophic lake. Appl Environ Microbiol, 64: 431–438.PubMedGoogle Scholar
  53. Williams T, Barbosa-Solomieu V, and Chinchar V G. 2005. A decade of advances in iridovirus research. Adv Virus Res, 65: 173–248.PubMedCrossRefGoogle Scholar
  54. Williamson S J, Rusch D B, Yooseph S, Halpern A L, Heidelberg K B, Glass J I, Andrews-Pfannkoch C, Fadrosh D, Miller C S, Sutton G, Frazier M, and Venter J C. 2008. The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples. Plos One, 3(1): e1456.PubMedCrossRefGoogle Scholar
  55. Wilson. W H, Etten. J L V, Schroeder. D S, Nagasaki. K, Brussaard. C, Delaroque. N, Bratbak. G, and Suttle C. 2005. Phycodnaviridae, vol. Eighth Report of the International Committee of the Taxonomy of Viruses. Elsevier Academic Press, San Diego.Google Scholar
  56. Yamada T, Onimatsu H, and Van Etten J L. 2006. Chlorella viruses. Adv Virus Res, 66: 293–336.PubMedCrossRefGoogle Scholar
  57. Yanai-Balser G M, Duncan G A, Eudy J D, Wang D, Li X, Agarkova I V, Dunigan D D, and Van Etten J L. 2010. Microarray analysis of Paramecium bursaria chlorella virus 1 transcription. J Virol, 84: 532–542.PubMedCrossRefGoogle Scholar
  58. Yoshida T, Takashima Y, Tomaru Y, Shirai Y, Takao Y, Hiroishi S, and Nagasaki K. 2006. Isolation and characterization of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol, 72: 1239–1247.PubMedCrossRefGoogle Scholar
  59. Zhang T, Breitbart M, Lee W H, Run J Q, Wei C L, Soh S W, Hibberd M L, Liu E T, Rohwer F, and Ruan Y. 2006. RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol, 4: e3.PubMedCrossRefGoogle Scholar
  60. Zhong Y, Chen F, Wilhelm S W, Poorvin L, and Hodson R E. 2002. Phylogenetic diversity of marine cyanophage isolates and natural virus communities as revealed by sequences of viral capsid assembly protein gene g20. Appl Environ Microbiol, 68: 1576–1584.PubMedCrossRefGoogle Scholar
  61. Zhou J Z C, Wang L L. 2009. Study on characteristic of algae growth in Tai Lake based on nonlinear dynamic analysis. Acta Hydrobiologica Sinica, 33(5): 931–936.CrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xingyi Ge
    • 1
  • Yongquan Wu
    • 1
  • Meiniang Wang
    • 1
  • Jun Wang
    • 1
  • Lijun Wu
    • 1
  • Xinglou Yang
    • 1
  • Yuji Zhang
    • 1
  • Zhengli Shi
    • 1
    Email author
  1. 1.Center for Emerging Infectious Diseases, State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations