Virologica Sinica

, Volume 28, Issue 5, pp 272–279 | Cite as

Characterization and genomic analysis of a plaque purified strain of cyanophage PP

Research Article

Abstract

Cyanophages are ubiquitous and essential components of the aquatic environment and play an important role in the termination of algal blooms. As such, they have attracted widespread interest. PP was the first isolated cyanophage in China, which infects Plectonema boryanum and Phormidium foveolarum. In this study, this cyanophage was purified three times by a double-agar overlay plaque assay and characterized. Its genome was extracted, totally sequenced and analyzed. Electron microscopy revealed a particle with an icosahedral head connected to a short stubby tail. Bioassays showed that PP was quite virulent. The genome of PP is a 42,480 base pair (bp), linear, double-stranded DNA molecule with 222 bp terminal repeats. It has high similarity with the known Pf-WMP3 sequence. It contains 41 open reading frames (ORFs), 17 of which were annotated. Intriguingly, the genome can be divided into two completely different parts, which differ both in orientation and function.

Keywords

Cyanophage PP Characterization Plaque assay Complete genome sequencing Genome organization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergh O, Borsheim K Y, Bratbak G, et al. 1989. High abundance of viruses found in aquatic environments. Nature, 340: 467–468.PubMedCrossRefGoogle Scholar
  2. Bratbak G, Heldal M, Norland S, et al. 1990. Viruses as partners in spring bloom microbial trophodynamics. Appl Environ Microbiol, 56(5): 1400–1405.PubMedGoogle Scholar
  3. Bryan M J, Burroughs N J, Spence E M, et al. 2008. Evidence for the intense exchange of MazG in marine cyanophages by horizontal gene transfer. PloS One, 3(4): e2048.PubMedCrossRefGoogle Scholar
  4. Carmichael W W. 2001. Health effects of toxin-producing Cyanobacteria: “The CyanoHABs”. Hum Ecol Risk Assess, 7(5): 1393–1407.CrossRefGoogle Scholar
  5. Chenard C, and Suttle C A. 2008. Phylogenetic diversity of sequences of cyanophage photosynthetic gene psbA in marine and freshwaters. Appl Environ Microbiol, 74(17): 5317–5324.PubMedCrossRefGoogle Scholar
  6. Chen F, and Lu J R. 2002. Genomic sequence and evolution of marine Cyanophage P60: a new insight on lytic and lysogenic phages. Appl Environ Microbiol, 68(5): 2589–2594.PubMedCrossRefGoogle Scholar
  7. Codd G A, Morrison L F, and Metcalf J S. 2005. Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol, 203: 264–272.PubMedCrossRefGoogle Scholar
  8. Dittmann E, and Wiegand C. 2006. Cyanobacterial toxins-occurrence, biosynthesis and impact on human affairs. Mol Nutr Food Res, 50: 7–17.PubMedCrossRefGoogle Scholar
  9. Fuhrman J A. 1999. Marine viruses and their biogeochemical and ecological effects. Nature, 399: 541–548.PubMedCrossRefGoogle Scholar
  10. Gao E B, Gui J F, and Zhang Q Y. 2012. A novel cyanophage with cyanobacterial non-bleaching protein A gene in the genome. J Virol, 86(1): 236–245.PubMedCrossRefGoogle Scholar
  11. Jungblut A D, Hawes I, Mountfort D, et al. 2005. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ Microbiol, 7(4): 519–529.PubMedCrossRefGoogle Scholar
  12. Kropinski A M, Mazzocco A, Waddell TE, et al. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol, 501: 69–76.PubMedCrossRefGoogle Scholar
  13. Liao M J, Cheng K, Yang J Y, et al. 2010. Assessment of UV-B damage in cyanophage PP. Aquat Microb Ecol, 58: 323–328.CrossRefGoogle Scholar
  14. Liu X Y, Shi M, Kong S L, et al. 2007. Cyanophage Pf-WMP4, a T7-like phage infecting the freshwater cyanobacterium Phormidium foveolarum: Complete genome sequence and DNA translocation. Virology, 366: 28–39.PubMedCrossRefGoogle Scholar
  15. Liu X Y, Kong S L, Shi M, et al. 2008. Genomic analysis of freshwater cyanophage Pf-WMP3 infecting cyanobacterium Phormidium foveolarum: the conserved elements for a phage. Microb Ecol, 56: 671–680.PubMedCrossRefGoogle Scholar
  16. Lorraine C B. 2002. Cyanobacterial Harmful Algal Blooms (CyanoHABs): Developing a public health response. Lake Reserv Manag, 18(1): 20–31.CrossRefGoogle Scholar
  17. Mann N H, Clokie M R J, Millard A, et al. 2005. The genome of S-PM2, a “photosynthetic” T4-type bacteriophage that infects marine Synechococcus strains. J Bacteriol, 187(9): 3188–3200.PubMedCrossRefGoogle Scholar
  18. Paul J H, and Weinbauer M. 2010. Detection of lysogeny in marine environments. In Wilhelm S W, Weinbauer M G, and Suttle C A (eds), Manual of Aquatic Viral Ecology, pp 30–33, American Society of Limnology and Oceanography, TX, USA.CrossRefGoogle Scholar
  19. Pope W H, Weigele P R, Chang J, et al. 2007. Genome sequence, structural proteins, and capsid organization of the cyanophage Syn5: a “horned” bacteriophage of marine Synechococcus. J Mol Biol, 368: 966–981.PubMedCrossRefGoogle Scholar
  20. Proctor L M, and Fuhrman J A. 1990. Viral mortality of marine bacteria and cyanobacteria. Nature, 343: 60–62.CrossRefGoogle Scholar
  21. Raytcheva D A, Haase-Pettingell C, Piret J, et al. 2011. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J Virol, 85(5): 2406–2415.PubMedCrossRefGoogle Scholar
  22. Sabehi G, Shaulov L, Silver D H, et al. 2012. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proc Natl Acad Sci U S A, 109(6): 2037–2042.PubMedCrossRefGoogle Scholar
  23. Safferman R S, and Morris S E. 1963. Algal virus: isolation. Science, 140(3567): 679–680.PubMedCrossRefGoogle Scholar
  24. Safferman R S. 1983. Classification and nomenclature of viruses of cyanobacteria. Intervirology, 19: 61–66.PubMedCrossRefGoogle Scholar
  25. Sherman L A, Haselkorn R. 1970. LPP-1 infection of the blue-green alga Plectonema boryanum: I. Electron Microscopy. J Virol, 6(6): 820–833.PubMedGoogle Scholar
  26. Sullivan M B, Coleman M L, Weigele P, et al. 2005. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PloS Biol, 3(5): e144.PubMedCrossRefGoogle Scholar
  27. Sullivan M B, Krastins B, Hughes J L, et al. 2009. The genome and structural proteome of an ocean siphovirus: A new window into the cyanobacterial ‘mobilome’. Environ Microbiol, 11: 2935–2951.PubMedCrossRefGoogle Scholar
  28. Suttle CA. 2005. Viruses in the sea. Nature, 437: 356–361.PubMedCrossRefGoogle Scholar
  29. Suttle CA. 2007. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol, 5: 801–812.PubMedCrossRefGoogle Scholar
  30. Weigele P R, Pope W H, Pedulla M L, et al. 2007. Genomic and structural analysis of Syn9, a cyanophage infecting marine Prochlorococcus and Synechococcus. Environ Microbiol, 9: 1675–1695.PubMedCrossRefGoogle Scholar
  31. Wilhelm S W, Carberry M J, Eldridge M L, et al. 2006. Marine and freshwater cyanophages in a Laurentian Great Lake: evidence from infectivity assays and molecular analyses of g20 genes. Appl Environ Microbiol, 72(7): 4957–4963.PubMedCrossRefGoogle Scholar
  32. Wilson W H, Joint L R, Carr N G, et al. 1993. Isolation and molecular characterization of five marine cyanophages propagated on S ynechococcus sp. strain WH7803. Appl Environ Microbiol, 59: 3736–3743.PubMedGoogle Scholar
  33. Yoshida M, Yoshida T, Kashima A, et al. 2008. Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophages in freshwater. Appl Environ Microbiol, 74(10): 3269–3273.PubMedCrossRefGoogle Scholar
  34. Yoshida T, Nagasaki K, Takashima Y, et al. 2008. Ma-LMM01 infecting Microcystis aeruginosa illuminates diverse cyanophage genome strategies. J Bacteriol, 190(5): 1762–1772.PubMedCrossRefGoogle Scholar
  35. Zhao Y J, Chen K, Shi Z L, et al. 2002. Isolation and identification of the first cyanophage in China. Prog Nat Sci, 12: 923–927. (In Chinese)Google Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yiran Zhou
    • 1
  • Juan Lin
    • 1
  • Na Li
    • 1
  • Zhihong Hu
    • 1
  • Fei Deng
    • 1
  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations