Advertisement

Virologica Sinica

, Volume 28, Issue 6, pp 345–351 | Cite as

PNKP knockdown by RNA interference inhibits herpes simplex virus-1 replication in astrocytes

  • Lei Yue
  • Sujie Guo
  • Xia Cao
  • Ying Zhang
  • Le Sun
  • Longding Liu
  • Min Yan
  • Qihan LiEmail author
Research Article

Abstract

Herpes simplex virus-1 (HSV-1) is a major pathogen that causes various central nervous system (CNS) diseases, including herpes simplex encephalitis and meningitis. According to recent studies, PNKP significantly affects the proliferation of HSV-1 in astrocytes. Here, we used viral proliferation curves to confirm the significant inhibitory effects of PNKP on HSV-1 proliferation. PNKP downregulation was also confirmed by analyzing the transcription of viral genes. We found that PNKP downregulation affects the viral DNA copy number. This study preliminarily confirms that PNKP affects viral proliferation by affecting HSV-1 genome cyclization. These results also suggest that astrocytes play a specific role in preventing HSV-1 infection.

Keywords

Herpes simplex virus I (HSV-1) Replication PNKP Cyclization Primary culture Monkey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baringer J R. 2008. Herpes simplex infections of the nervous system. Neurol Clin, 26: 657–674, viii.PubMedCrossRefGoogle Scholar
  2. Frangakis M V, and Kimelberg H K. 1984. Dissociation of neonatal rat brain by dispase for preparation of primary astrocyte cultures. Neurochem Res, 9: 1689–1698.PubMedCrossRefGoogle Scholar
  3. Garber D A, Beverley S M, and Coen D M. 1993. Demonstration of circularization of herpes simplex virus DNA following infection using pulsed field gel electrophoresis. Virology, 197: 459–462.PubMedCrossRefGoogle Scholar
  4. Gorska P. 2000. Principles in laboratory animal research for experimental purposes. Med Sci Monit, 6: 171–180.PubMedGoogle Scholar
  5. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe P B, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina Z Z, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova J L, and Zhang S Y. 2011. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med, 208: 2083–2098.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Jilani A, Ramotar D, Slack C, Ong C, Yang X M, Scherer S W, and Lasko D D. 1999. Molecular cloning of the human gene, PNKP, encoding a polynucleotide kinase 3′-phosphatase and evidence for its role in repair of DNA strand breaks caused by oxidative damage. J Biol Chem, 274: 24176–24186.PubMedCrossRefGoogle Scholar
  7. Kennedy P G, and Chaudhuri A. 2002. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry, 73: 237–238.PubMedCrossRefGoogle Scholar
  8. Lehman I R, and Boehmer P E. 1999. Replication of herpes simplex virus DNA. J Biol Chem, 274: 28059–28062.PubMedCrossRefGoogle Scholar
  9. Levison S W, and McCarthy K D. 1991. Characterization and partial purification of AIM: a plasma protein that induces rat cerebral type 2 astroglia from bipotential glial progenitors. J Neurochem, 57: 782–794.PubMedCrossRefGoogle Scholar
  10. Li J, Hu S, Zhou L, Ye L, Wang X, Ho J, and Ho W. 2011. Interferon lambda inhibits herpes simplex virus type I infection of human astrocytes and neurons. Glia, 59: 58–67.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Livingston C M, DeLuca N A, Wilkinson D E, and Weller S K. 2008. Oligomerization of ICP4 and rearrangement of heat shock proteins may be important for herpes simplex virus type 1 prereplicative site formation. J Virol, 82: 6324–6336.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Muylaert I, and Elias P. 2007. Knockdown of DNA ligase IV/XRCC4 by RNA interference inhibits herpes simplex virus type I DNA replication. J Biol Chem, 282: 10865–10872.PubMedCrossRefGoogle Scholar
  13. Muylaert I, Tang K W, and Elias P. 2011. Replication and recombination of herpes simplex virus DNA. J Biol Chem, 286: 15619–15624.PubMedCrossRefGoogle Scholar
  14. Norton W T, Farooq M, Chiu F C, and Bottenstein J E. 1988. Pure astrocyte cultures derived from cells isolated from mature brain. Glia, 1: 403–414.PubMedCrossRefGoogle Scholar
  15. Pasieka T J, Cilloniz C, Carter V S, Rosato P, Katze M G, and Leib D A. 2011. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection. J Virol, 85: 12972–12981.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Reinert L S, Harder L, Holm C K, Iversen M B, Horan K A, Dagnaes-Hansen F, Ulhoi B P, Holm T H, Mogensen T H, Owens T, Nyengaard J R, Thomsen A R, and Paludan S R. 2012. TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest, 122: 1368–1376.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Selmaj K W, Farooq M, Norton W T, Raine C S, and Brosnan C F. 1990. Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor. J Immunol, 144: 129–135.PubMedGoogle Scholar
  18. Strang B L, and Stow N D. 2005. Circularization of the herpes simplex virus type 1 genome upon lytic infection. J Virol, 79: 12487–12494.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Tabernero A, Orfao A, and Medina J M. 1996. Astrocyte differentiation in primary culture followed by flow cytometry. Neurosci Res, 24: 131–138.PubMedCrossRefGoogle Scholar
  20. Weinfeld M, Mani R S, Abdou I, Aceytuno R D, and Glover J N. 2011. Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci, 36: 262–271.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Wuest T R, and Carr D J. 2008. The role of chemokines during herpes simplex virus-1 infection. Front Biosci, 13: 4862–4872.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Yu X, Liu L, Wu L, Wang L, Dong C, Li W, and Li Q. 2010. Herpes simplex virus type 1 tegument protein VP22 is capable of modulating the transcription of viral TK and gC genes via interaction with viral ICP0. Biochimie, 92: 1024–1030.PubMedCrossRefGoogle Scholar
  23. Zolner A E, Abdou I, Ye R, Mani R S, Fanta M, Yu Y, Douglas P, Tahbaz N, Fang S, Dobbs T, Wang C, Morrice N, Hendzel M J, Weinfeld M, and Lees-Miller S P. 2011. Phosphorylation of polynucleotide kinase/phosphatase by DNA-dependent protein kinase and ataxia-telangiectasia mutated regulates its association with sites of DNA damage. Nucleic Acids Res, 39: 9224–9237.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lei Yue
    • 1
  • Sujie Guo
    • 1
  • Xia Cao
    • 2
  • Ying Zhang
    • 1
  • Le Sun
    • 1
  • Longding Liu
    • 1
  • Min Yan
    • 1
  • Qihan Li
    • 1
    Email author
  1. 1.Institute of Medical BiologyChinese Academy of Medicine Science & Peking Union Medical CollegeKunmingChina
  2. 2.The Second Affiliated Hospital of Kunming Medical UniversityKunmingChina

Personalised recommendations