High-resolution 3D structures reveal the biological functions of reoviruses

Abstract

Viruses in the family Reoviridae are non-enveloped particles comprising a segmented double-stranded RNA genome surrounded by a two-layered or multi-layered icosahedral protein capsid. These viruses are classified into two sub-families based on their particle structural organization. Recent studies have focused on high-resolution three-dimensional structures of reovirus particles by using cryo-electron microscopy (cryo-EM) to approach the resolutions seen in X-ray crystallographic structures. The results of cryo-EM image reconstructions allow tracing of most of the protein side chains, and thus permit integration of structural and functional information into a coherent mechanism for reovirus assembly and entry.

This is a preview of subscription content, access via your institution.

References

  1. Agosto, M.A., Myers, K.S., Ivanovic, T., and Nibert, M.L. 2008. A positive feedback mechanism promotes reovirus particle conversion to the intermediate associated with membrane penetration. Proc. Natl. Acad. Sci. USA 105, 10571–10576.

    CAS  PubMed  Article  Google Scholar 

  2. Aoki S T, Settembre E C, Trask S D, Greenberg H B, Harrison S C, Dormitzer P R. 2009. Structure of rotavirus outer-layer protein VP7 bound with a neutralizing Fab. Science, 324: 1444–1447.

    Article  Google Scholar 

  3. Chandran K, Farsetta D L, Nibert M L. 2002. Strategy for nonenveloped virus entry: a hydrophobic conformer of the reovirus membrane penetration protein micro 1 mediates membrane disruption. J Virol, 76: 9920–9933.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  4. Chandran K, Parker J S, Ehrlich M, Kirchhausen T, Nibert M L. 2003. The delta region of outer-capsid protein micro 1 undergoes conformational change and release from reovirus particles during cell entry. J Virol, 77: 13361–13375.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  5. Chen J Z, Settembre E C, Aoki S T, Zhang X, Bellamy A R, Dormitzer P R, Harrison S C, Grigorieff N. 2009. Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM. Proc Natl Acad Sci USA, 106: 10644–10648.

    CAS  PubMed  Article  Google Scholar 

  6. Cheng L P, Fang Q, Shah S, Atanasov I C and Zhou Z H. 2008. Subnanometer-resolution structures of the grass carp reovirus core and virion. J Mol Biol, 382: 213–222.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  7. Cheng L P, Zhu J, Hui W H, Zhang X, Honig B, Fang Q and Zhou Z H. 2010. Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. J Mol Biol, 397: 852–863.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Dormitzer P R, Nason E B, Prasad B V, Harrison S C. 2004. Structural rearrangements in the membrane penetration protein of a nonenveloped virus. Nature, 430: 1053–1058.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Dryden K A, Wang G, Yeager M, Nibert M L, Coombs K M, Furlong D B, Fields B N, Baker T S. 1993. Early steps in reovirus infection are associated with dramatic changes in supramolecular structure and protein conformation: analysis of virions and subviral particles by cryoelectron microscopy and image reconstruction. J Cell Biol, 122: 1023–1041.

    CAS  PubMed  Article  Google Scholar 

  10. Estes M K, Kapikian A Z. 2007. Rotaviruses. In Fields Virology, Knipe DM, Howley PM (eds) 5th edn, pp 1918–1974. Philadelphia: Lippincott, Williams & Wilkins.

    Google Scholar 

  11. Fang Q, Shah S, Liang Y, Zhou Z H. 2005. 3D reconstruction and capsid protein character-ization of grass carp reovirus. Sci China C Life Sci, 48: 593–600.

    CAS  PubMed  Article  Google Scholar 

  12. Hewat E A, Booth T F, Loudon P T, Roy P. 1992. Three-dimensional reconstruction of baculovirus expressed bluetongue virus core-like particles by cryo-electron microscopy. Virology, 189:10–20.

    CAS  PubMed  Article  Google Scholar 

  13. Ivanovic T, Agosto M A, Zhang L, Chandran K, Harrison S C, Nibert M L. 2008. Peptides released from reovirus outer capsid form membrane pores that recruit virus particles. EMBO J, 27: 1289–1298.

    CAS  PubMed  Article  Google Scholar 

  14. Kim J, Zhang X, Centonze V E, Bowman V D, Noble S, Baker T S, Nibert M L. 2002. The hydrophilic amino-terminal arm of reovirus core-shell protein λ1 is dispensable for particle assembly. J Virol, 76: 12211–12222.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  15. Labbé M, Charpilienne A, Crawford S E, Estes M K, Cohen J. 1991. Expression of rotavirus VP2 produces empty corelike particles. J Virol, 65: 2946–2952.

    PubMed Central  PubMed  Google Scholar 

  16. Liemann, S, Chandran, K, Baker T S, Nibert M L, Harrison S C. 2002. Structure of the reovirus membrane-penetration protein, Mu1, in a complex with is protector protein, Sigma3. Cell, 108: 283–295.

    CAS  PubMed  Article  Google Scholar 

  17. Makkay A, Noordeloos A A, Mertens P P C, Attoui H, Duncan R, Dermody T S. 2011. Reoviridae. In: Virus Taxonomy (Andrew M.Q. King, Michael J. Adams, Eric B. Carstens, and Elliot J. Lefkowitz, eds.). Oxford: Elsevier, pp. 541–638.

    Google Scholar 

  18. McClain B, Settembre E, Temple B R, Bellamy A R, Harrison SC. 2010. X-ray crystal structure of the rotavirus inner capsid particle at 3.8A° resolution. J Mol Biol, 397: 587–599.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  19. Odegard, A L, Chandran K, Zhang X, Parker J S, Baker T S, Nibert M L. 2004. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. J Virol, 78: 8732–8745.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. Reinisch K M, Nibert M L, Harrison S C. 2000. Structure of the reovirus core at 3.6 angstrom resolution. Nature, 404(6781): 960–967.

    CAS  PubMed  Article  Google Scholar 

  21. Settembre E C, Chen J Z, Dormitzer P R, Grigorieff N, Harrison S C. 2011. Atomic model of an infectious rotavirus particle. EMBO J, 30: 408–416.

    CAS  PubMed  Article  Google Scholar 

  22. Yu X, Jin L, Zhou Z H. 2008. 3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature, 453:415–419.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  23. Zhang L, Agosto M A, Ivanovic T, King D S, Nibert M L, Harrison S C. 2009. Requirements for the formation of membrane pores by the reovirus myristoylated m1N peptide. J Virol, 83: 7004–7014.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  24. Zhang L, Chandran K, Nibert M L, Harrison S C. 2006. Reovirus m1 structural rearrangements that mediate membrane penetration. J Virol, 80: 12367–12376.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  25. Zhang, L, Agosto, M A, Ivanovic T, King D S, Nibert M L, Harrison S C. 2009. Requirements for the formation of membrane pores by the reovirus myristoylated micro1N peptide. J Virol, 83: 7004–7014.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  26. Zhang X, Tang J G, Walker S B, O’Harac D, Nibertd M L, Duncanc R, S. Bakera T. 2005. Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology, 343: 25–35.

    CAS  PubMed  Article  Google Scholar 

  27. Zhang X, Settembre E, Xu C, Dormitzer PR, Bellamy R, Harrison SC, Grigorieff N. 2008. Near-atomic resolution using electron cryomicroscopy and single-particle reconstruction. Proc Natl Acad Sci USA 105: 1867–1872.

    CAS  PubMed  Article  Google Scholar 

  28. Zhang X, Boyce M, Bhattacharya B, Schein S, Roy P, Zhou Z H. 2010b. Bluetongue virus coat protein VP2 contains sialic acidbinding domains, and VP5 resembles enveloped virus fusion proteins. Proc Natl Acad Sci USA, 107: 6292–6297.

    CAS  PubMed  Article  Google Scholar 

  29. Zhang X, Jin, L, Fang Q, Hui W H, Zhou Z H. 2010a. 3.3 Å cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry. Cell, 141:472–482.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qin Fang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, X., Fang, Q. High-resolution 3D structures reveal the biological functions of reoviruses. Virol. Sin. 28, 318–325 (2013). https://doi.org/10.1007/s12250-013-3341-6

Download citation

Keywords

  • Non-enveloped virus
  • Reoviruses
  • Structural basis
  • Assembly
  • Cell entry