Virologica Sinica

, Volume 28, Issue 3, pp 152–160 | Cite as

Inhibition of japanese encephalitis virus infection by flavivirus recombinant e protein domain III

  • Jingjing Fan
  • Yi Liu
  • Xuping Xie
  • Bo Zhang
  • Zhiming Yuan
Research Article

Abstract

Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus closely related to the human pathogens including yellow fever virus, dengue virus and West Nile virus. There are currently no effective antiviral therapies for all of the flavivirus and only a few highly effective vaccines are licensed for human use. In this paper, the E protein domain III (DIII) of six heterologous flaviviruses (DENV1-4, WNV and JEV) was expressed in Escherichia coli successfully. The proteins were purified after a solubilization and refolding procedure, characterized by SDS-PAGE and Western blotting. Competitive inhibition showed that all recombinant flavivirus DIII proteins blocked the entry of JEV into BHK-21 cells. Further studies indicated that antibodies induced by the soluble recombinant flavivirus DIII partially protected mice against lethal JEV challenge. These results demonstrated that recombinant flavivirus DIII proteins could inhibit JEV infection competitively, and immunization with proper folding flavivirus DIII induced cross-protection against JEV infection in mice, implying a possible role of DIII for the cross-protection among flavivirus as well as its use in antigens for immunization in animal models.

Keywords

Japanese encephalitis virus E protein domain III Cross-protection Antibody 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appaiahgari M B, and Vrati S. 2010. IMOJEV (R): a Yellow fever virus-based novel Japanese encephalitis vaccine. Expert Review of Vaccines, 9: 1371–1384.PubMedCrossRefGoogle Scholar
  2. Calisher C H, Karabatsos N, Dalrymple J M, Shope R E, Porterfield J S, Westaway E G, and Brandt W E. 1989. Antigenic Relationships between Flaviviruses as Determined by Cross-Neutralization Tests with Polyclonal Antisera. Journal of General Virology, 70: 37–43.PubMedCrossRefGoogle Scholar
  3. Campbell GL, Hills SL, Fischer M, Jacobson JA, Hoke CH, et al. 2011. Estimated global incidence of Japanese encephalitis: a systematic review. Bull World Health Organ 89: 766–774, 774A–774E.PubMedCrossRefGoogle Scholar
  4. Chavez J H, Silva J R, Amarilla A A, and Moraes Figueiredo L T. 2010. Domain III peptides from flavivirus envelope protein are useful antigens for serologic diagnosis and targets for immunization. Biologicals, 38: 613–618.PubMedCrossRefGoogle Scholar
  5. Chien Y J, Chen W J, Hsu W L, and Chiou S S. 2008. Bovine lactoferrin inhibits Japanese encephalitis virus by binding to heparan sulfate and receptor for low density lipoprotein. Virology, 379: 143–151.PubMedCrossRefGoogle Scholar
  6. Chow L, Sun H C, Chen H Y, Lin S Y, and Wu J S. 1992. Detection and differentiation of dengue-1 from Japanese encephalitis virus infections by ABC MAC-ELISA. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 25: 172–180.PubMedGoogle Scholar
  7. Chu J H, Chiang C C, and Ng M L. 2007. Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol, 178: 2699–2705.PubMedGoogle Scholar
  8. Chu J J H, Rajamanonmani R, Li J, Bhuvanakantham R, Lescar J, and Ng M L. 2005. Inhibition of West Nile virus entry by using a recombinant domain III from the envelope glycoprotein. Journal of General Virology, 86: 405–412.PubMedCrossRefGoogle Scholar
  9. Crill W D, and Roehrig J T. 2001. Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. Journal of Virology, 75: 7769–7773.PubMedCrossRefGoogle Scholar
  10. Dou J L, Jing T, Fan JJ, Yuan ZM. 2011. Surface display of domain III of Japanese encephalitis virus E protein on Salmonella typhimurium by using an ice nucleation protein. Virol Sin, 26:409–417.PubMedCrossRefGoogle Scholar
  11. Eder S, Dubischar-Kastner K, Firbas C, Jelinek T, Jilma B, Kaltenboeck A, Knappik M, Kollaritsch H, Kundi M, Paulke-Korinek M, Schuller E, and Klade C S. 2011. Long term immunity following a booster dose of the inactivated Japanese Encephalitis vaccine IXIARO (R), IC51. Vaccine, 29: 2607–2612.PubMedCrossRefGoogle Scholar
  12. Ghosh D, and Basu A. 2009. Japanese Encephalitis — A Pathological and Clinical Perspective. Plos Neglected Tropical Diseases, 3.Google Scholar
  13. Heinz F X, Stiasny K, Puschnerauer G, Holzmann H, Allison S L, Mandl C W, and Kunz C. 1994. Structural-Changes and Functional Control of the Tick-Borne Encephalitis-Virus Glycoprotein-E by the Heterodimeric Association with Protein Prm. Virology, 198: 109–117.PubMedCrossRefGoogle Scholar
  14. Hennessy S, Liu Z L, Tsai T F, Strom B L, Wan C M, Liu H L, Wu T X, Yu H J, Liu Q M, Karabatsos N, Bilker W B, and Halstead S B. 1996. Effectiveness of live-attenuated Japanese encephalitis vaccine (SA14-14-2): A case-control study. Lancet, 347: 1583–1586.PubMedCrossRefGoogle Scholar
  15. Hoke C H, Nisalak A, Sangawhipa N, Jatanasen S, Laorakapongse T, Innis B L, Kotchasenee S O, Gingrich J B, Latendresse J, Fukai K, and Burke D S. 1988. Protection against Japanese Encephalitis by Inactivated Vaccines. New England Journal of Medicine, 319: 608–614.PubMedCrossRefGoogle Scholar
  16. Jones C T, Ma L, Burgner J W, Groesch T D, Post C B, and Kuhn R J. 2003. Flavivirus capsid is a dimeric alpha-helical protein. J Virol, 77: 7143–7149.PubMedCrossRefGoogle Scholar
  17. Kanai R, Kar K, Anthony K, Gould L H, Ledizet M, Fikrig E, Marasco W A, Koski R A, and Modis Y. 2006. Crystal structure of West Nile virus envelope glycoprotein reveals viral surface epitopes. J Virol, 80: 11000–11008.PubMedCrossRefGoogle Scholar
  18. Konno J, Endo K, Agatsuma H, and Ishida N. 1966. Cyclic Outbreaks of Japanese Encephalitis among Pigs and Humans. American Journal of Epidemiology, 84: 292–&.PubMedGoogle Scholar
  19. Kuhn R J, Zhang W, Rossmann M G, Pletnev S V, Corver J, Lenches E, Jones C T, Mukhopadhyay S, Chipman P R, Strauss E G, Baker T S, and Strauss J H. 2002. Structure of dengue virus: Implications for flavivirus organization, maturation, and fusion. Cell, 108: 717–725.PubMedCrossRefGoogle Scholar
  20. Li S H, Li X F, Zhao H, Jiang T, Deng Y Q, Yu X D, Zhu Q Y, Qin E D, and Qin C F. 2011. Cross protection against lethal West Nile virus challenge in mice immunized with recombinant E protein domain III of Japanese encephalitis virus. Immunol Lett, 138: 156–160.PubMedCrossRefGoogle Scholar
  21. Lindenbach B D, H. J. Thiel, and C. M. Rice. 2007. Flaviviridae: the virus and their replication. In Howley D M K a P M (ed.), Fields virology, 5th ed, vol. 1, Lippincott-Raven, Philadelphia, Pa.Google Scholar
  22. Lozach P Y, Burleigh L, Staropoli I, Navarro-Sanchez E, Harriague J, Virelizier J L, Rey F A, Despres P, Arenzana-Seisdedos F, and Amara A. 2005. Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem, 280: 23698–23708.PubMedCrossRefGoogle Scholar
  23. Luca V C, AbiMansour J, Nelson C A, and Fremont D H. 2012. Crystal structure of the Japanese encephalitis virus envelope protein. J Virol, 86: 2337–2346.PubMedCrossRefGoogle Scholar
  24. Miller J L, de Wet B J, Martinez-Pomares L, Radcliffe C M, Dwek R A, Rudd P M, and Gordon S. 2008. The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog, 4: e17.PubMedCrossRefGoogle Scholar
  25. Modis Y, Ogata S, Clements D, and Harrison S C. 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A, 100: 6986–6991.PubMedCrossRefGoogle Scholar
  26. Nothdurft H D, Jelinek T, Marschang A, Maiwald H, Kapaun A, and Loscher T. 1996. Adverse reactions to Japanese encephalitis vaccine in travellers. J Infect, 32: 119–122.PubMedCrossRefGoogle Scholar
  27. Nybakken G E, Oliphant T, Johnson S, Burke S, Diamond M S, and Fremont D H. 2005. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature, 437: 764–769.PubMedCrossRefGoogle Scholar
  28. Plesner A M, P. Arlien-Soborg, and M. Herning. 1998. Neurological complications to vaccination against Japanese encephalitis. the official journal of the European Federation of Neurological Societies, 5: 479–485.CrossRefGoogle Scholar
  29. Rajamanonmani R, Nkenfou C, Clancy P, Yau Y H, Shochat S G, Sukupolvi-Petty S, Schul W, Diamond M S, Vasudevan S G, and Lescar J. 2009. On a mouse monoclonal antibody that neutralizes all four dengue virus serotypes. Journal of General Virology, 90: 799–809.PubMedCrossRefGoogle Scholar
  30. Rey F A, Heinz F X, Mandl C, Kunz C, and Harrison S C. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature, 375: 291–298.PubMedCrossRefGoogle Scholar
  31. Schioler K L, Samuel M, and Wai K L. 2007. Vaccines for preventing Japanese encephalitis. Cochrane Database Syst Rev: CD004263.Google Scholar
  32. Song B H, Yun G N, Kim J K, Yun S I, and Lee Y M. 2012. Biological and genetic properties of SA(14)-14-2, a live-attenuated Japanese encephalitis vaccine that is currently available for humans. Journal of Microbiology, 50: 698–706.CrossRefGoogle Scholar
  33. Tesh R B, da Rosa A P A T, Guzman H, Araujo T P, and Xiao S Y. 2002. Immunization with heterologous flaviviruses protective against fatal West Nile encephalitis. Emerging Infectious Diseases, 8: 245–251.PubMedCrossRefGoogle Scholar
  34. Wu K P, Wu C W, Tsao Y P, Kuo T W, Lou Y C, Lin C W, Wu S C, and Cheng J W. 2003. Structural basis of a flavivirus recognized by its neutralizing antibody — Solution structure of the domain III of the Japanese encephalitis virus envelope protein. Journal of Biological Chemistry, 278: 46007–46013.PubMedCrossRefGoogle Scholar
  35. Yu I M, Zhang W, Holdaway H A, Li L, Kostyuchenko V A, Chipman P R, Kuhn R J, Rossmann M G, and Chen J. 2008. Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319: 1834–1837.PubMedCrossRefGoogle Scholar
  36. Zaitseva E, Yang S T, Melikov K, Pourmal S, and Chernomordik L V. 2010. Dengue Virus Ensures Its Fusion in Late Endosomes Using Compartment-Specific Lipids. PLoS Pathog, 6.Google Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jingjing Fan
    • 1
  • Yi Liu
    • 1
  • Xuping Xie
    • 1
  • Bo Zhang
    • 1
  • Zhiming Yuan
    • 1
  1. 1.Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina

Personalised recommendations