Virologica Sinica

, Volume 28, Issue 2, pp 71–80 | Cite as

Human monoclonal antibodies as candidate therapeutics against emerging viruses and HIV-1

  • Zhongyu Zhu
  • Ponraj Prabakaran
  • Weizao Chen
  • Christopher C. Broder
  • Rui Gong
  • Dimiter S. Dimitrov


More than 40 monoclonal antibodies (mAbs) have been approved for a number of disease indications with only one of these (Synagis) — for a viral disease, and not for therapy but for prevention. However, in the last decade novel potent mAbs have been discovered and characterized with potential as therapeutics against viruses of major importance for public health and biosecurity including Hendra virus (HeV), Nipah virus (NiV), severe acute respiratory syndrome coronavirus (SARS-CoV), Ebola virus (EBOV), West Nile virus (WNV), influenza virus (IFV) and human immunodeficiency virus type 1 (HIV-1). Here, we review such mAbs with an emphasis on antibodies of human origin, and highlight recent results as well as technologies and mechanisms related to their potential as therapeutics.


Antibodies Viruses SARS-CoV Hendra virus Nipah Virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashkenazi A. 2008. Directing cancer cells to self-destruct with pro-apoptotic receptor agonists. Nature Reviews Drug Discovery, 7: 1001–1012.PubMedCrossRefGoogle Scholar
  2. Bale S, Dias J M, Fusco M L, Hashiguchi T, Wong A C, Liu T, Keuhne A I, Li S, Woods V L, Jr., Chandran K, Dye J M, and Saphire E O. 2012. Structural basis for differential neutralization of ebolaviruses. Viruses, 4: 447–470.PubMedCrossRefGoogle Scholar
  3. Bonsignori M, Alam S M, Liao H X, Verkoczy L, Tomaras G D, Haynes B F, and Moody M A. 2012. HIV-1 antibodies from infection and vaccination: insights for guiding vaccine design. Trends Microbiol, 20: 532–539.PubMedCrossRefGoogle Scholar
  4. Bossart K N, Zhu Z, Middleton D, Klippel J, Crameri G, Bingham J, McEachern J A, Green D, Hancock T J, Chan Y P, Hickey A C, Dimitrov D S, Wang L F, and Broder C C. 2009. A neutralizing human monoclonal antibody protects against lethal disease in a new ferret model of acute nipah virus infection. PLoS Pathog, 5: e1000642.PubMedCrossRefGoogle Scholar
  5. Bossart K N, Geisbert T W, Feldmann H, Zhu Z, Feldmann F, Geisbert J B, Yan L, Feng Y R, Brining D, Scott D, Wang Y, Dimitrov A S, Callison J, Chan Y P, Hickey A C, Dimitrov D S, Broder C C, and Rockx B. 2011. A neutralizing human monoclonal antibody protects african green monkeys from hendra virus challenge. Sci Transl Med, 3: 105ra103.PubMedCrossRefGoogle Scholar
  6. Bouchet J, Basmaciogullari S E, Chrobak P, Stolp B, Bouchard N, Fackler O T, Chames P, Jolicoeur P, Benichou S, and Baty D. 2011. Inhibition of the Nef regulatory protein of HIV-1 by a single-domain antibody. Blood, 117: 3559–3568.PubMedCrossRefGoogle Scholar
  7. Bowden T A, Aricescu A R, Gilbert R J, Grimes J M, Jones E Y, and Stuart D I. 2008. Structural basis of Nipah and Hendra virus attachment to their cell-surface receptor ephrin-B2. Nat Struct Mol Biol, 15: 567–572.PubMedCrossRefGoogle Scholar
  8. Bugli F, Manzara S, Torelli R, Graffeo R, Santangelo R, Cattani P, and Fadda G. 2004. Human monoclonal antibody fragment specific for glycoprotein G in herpes simplex virus type 2 with applications for serotype-specific diagnosis. J Clin Microbiol, 42: 1250–1253.PubMedCrossRefGoogle Scholar
  9. Burton D R, Pyati J, Koduri R, Sharp S J, Thornton G B, Parren P W, Sawyer L S, Hendry R M, Dunlop N, Nara P L, and et al. 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science, 266: 1024–1027.PubMedCrossRefGoogle Scholar
  10. Carter P J. 2006. Potent antibody therapeutics by design. Nature Reviews Immunology, 6: 343–357.PubMedCrossRefGoogle Scholar
  11. Casadevall A, Dadachova E, and Pirofski L. 2004. Passive antibody therapy for infectious diseases. Nature Reviews Microbiology, 2: 695–703.PubMedCrossRefGoogle Scholar
  12. Chen L, Kwon Y D, Zhou T, Wu X, O’Dell S, Cavacini L, Hessell A J, Pancera M, Tang M, Xu L, Yang Z Y, Zhang M Y, Arthos J, Burton D R, Dimitrov D S, Nabel G J, Posner M R, Sodroski J, Wyatt R, Mascola J R, and Kwong P D. 2009. Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science, 326: 1123–1127.PubMedCrossRefGoogle Scholar
  13. Chen W, Zhu Z, Feng Y, and Dimitrov D S. 2008. Human domain antibodies to conserved sterically restricted regions on gp120 as exceptionally potent cross-reactive HIV-1 neutralizers. Proc Natl Acad Sci U S A, 105: 17121–17126.PubMedCrossRefGoogle Scholar
  14. Chen W, Prabakaran P, Zhu Z, Feng Y, Streaker E D, and Dimitrov D S. 2012. Characterization of human IgG repertoires in an acute HIV-1 infection. Exp Mol Pathol, 93: 399–407.PubMedCrossRefGoogle Scholar
  15. Chen W, Streaker E D, Russ D E, Feng Y, Prabakaran P, and Dimitrov D S. 2012. Characterization of germline antibody libraries from human umbilical cord blood and selection of monoclonal antibodies to viral envelope glycoproteins: Implications for mechanisms of immune evasion and design of vaccine immunogens. Biochem Biophys Res Commun, 417: 1164–1169.PubMedCrossRefGoogle Scholar
  16. Chen W, Zhu Z, Liao H, Quinnan G V, Jr., Broder C C, Haynes B F, and Dimitrov D S. 2010. Cross-Reactive Human IgM-Derived Monoclonal Antibodies that Bind to HIV-1 Envelope Glycoproteins. Viruses, 2: 547–565.PubMedCrossRefGoogle Scholar
  17. Corti D, Suguitan A L, Jr., Pinna D, Silacci C, Fernandez-Rodriguez B M, Vanzetta F, Santos C, Luke C J, Torres-Velez F J, Temperton N J, Weiss R A, Sallusto F, Subbarao K, and Lanzavecchia A. 2010. Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine. J Clin Invest, 120: 1663–1673.PubMedCrossRefGoogle Scholar
  18. Corti D, Voss J, Gamblin S J, Codoni G, Macagno A, Jarrossay D, Vachieri S G, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez B M, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire L F, Temperton N, Langedijk J P, Skehel J J, and Lanzavecchia A. 2011. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science, 333: 850–856.PubMedCrossRefGoogle Scholar
  19. Coughlin M M, and Prabhakar B S. 2012. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol, 22: 2–17.PubMedCrossRefGoogle Scholar
  20. Darbha R, Phogat S, Labrijn A F, Shu Y, Gu Y, Andrykovitch M, Zhang M Y, Pantophlet R, Martin L, Vita C, Burton D R, Dimitrov D S, and Ji X. 2004. Crystal structure of the broadly cross-reactive HIV-1-neutralizing Fab X5 and fine mapping of its epitope. Biochemistry, 43: 1410–1417.PubMedCrossRefGoogle Scholar
  21. Deschacht N, De Groeve K, Vincke C, Raes G, De Baetselier P, and Muyldermans S. 2010. A novel promiscuous class of camelid single-domain antibody contributes to the antigen-binding repertoire. J Immunol, 184: 5696–5704.PubMedCrossRefGoogle Scholar
  22. Dimitrov D S. 2009. Engineered CH2 domains (nanoantibodies). Mabs, 1: 26–28.PubMedCrossRefGoogle Scholar
  23. Dimitrov D S. 2010. Therapeutic antibodies, vaccines and antibodyomes. Mabs, 2: 347–356.PubMedCrossRefGoogle Scholar
  24. Dimitrov D S. 2012. Therapeutic proteins. Methods Mol Biol, 899: 1–26.PubMedCrossRefGoogle Scholar
  25. Dreyfus C, Laursen N S, Kwaks T, Zuijdgeest D, Khayat R, Ekiert D C, Lee J H, Metlagel Z, Bujny M V, Jongeneelen M, van der Vlugt R, Lamrani M, Korse H J, Geelen E, Sahin O, Sieuwerts M, Brakenhoff J P, Vogels R, Li O T, Poon L L, Peiris M, Koudstaal W, Ward A B, Wilson I A, Goudsmit J, and Friesen R H. 2012. Highly conserved protective epitopes on influenza B viruses. Science, 337: 1343–1348.PubMedCrossRefGoogle Scholar
  26. Du L, He Y, Zhou Y, Liu S, Zheng B J, and Jiang S. 2009. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol, 7: 226–236.PubMedCrossRefGoogle Scholar
  27. Duan J, Yan X, Guo X, Cao W, Han W, Qi C, Feng J, Yang D, Gao G, and Jin G. 2005. A human SARS-CoV neutralizing antibody against epitope on S2 protein. Biochem Biophys Res Commun, 333: 186–193.PubMedCrossRefGoogle Scholar
  28. Eaton B T, Broder C C, Middleton D, and Wang L F. 2006. Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol, 4: 23–35.PubMedCrossRefGoogle Scholar
  29. Ekiert D C, Bhabha G, Elsliger M A, Friesen R H, Jongeneelen M, Throsby M, Goudsmit J, and Wilson I A. 2009. Antibody recognition of a highly conserved influenza virus epitope. Science, 324: 246–251.PubMedCrossRefGoogle Scholar
  30. Ekiert D C, Friesen R H, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse H J, Brandenburg B, Vogels R, Brakenhoff J P, Kompier R, Koldijk M H, Cornelissen L A, Poon L L, Peiris M, Koudstaal W, Wilson I A, and Goudsmit J. 2011. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science, 333: 843–850.PubMedCrossRefGoogle Scholar
  31. Elshabrawy H A, Coughlin M M, Baker S C, and Prabhakar B S. 2012. Human Monoclonal Antibodies against Highly Conserved HR1 and HR2 Domains of the SARS-CoV Spike Protein Are More Broadly Neutralizing. PLoS ONE, 7: e50366.PubMedCrossRefGoogle Scholar
  32. Euler Z, and Schuitemaker H. 2012. Cross-reactive broadly neutralizing antibodies: timing is everything. Front Immunol, 3: 215.PubMedCrossRefGoogle Scholar
  33. Fennell B J, Darmanin-Sheehan A, Hufton S E, Calabro V, Wu L, Muller M R, Cao W, Gill D, Cunningham O, and Finlay W J. 2010. Dissection of the IgNAR V domain: molecular scanning and orthologue database mining define novel IgNAR hallmarks and affinity maturation mechanisms. J Mol Biol, 400: 155–170.PubMedCrossRefGoogle Scholar
  34. Fric J, Bertin-Maghit S, Wang C I, Nardin A, and Warter L. 2013. Use of human monoclonal antibodies to treat chikungunya virus infection. J Infect Dis, 207: 319–322.PubMedCrossRefGoogle Scholar
  35. Friedrich B M, Trefry J C, Biggins J E, Hensley L E, Honko A N, Smith D R, and Olinger G G. 2012. Potential vaccines and post-exposure treatments for filovirus infections. Viruses, 4: 1619–1650.PubMedCrossRefGoogle Scholar
  36. Gong R, Chen W, and Dimitrov D S. 2012. Candidate antibody-based therapeutics against HIV-1. BioDrugs, 26: 143–162.PubMedCrossRefGoogle Scholar
  37. Gong R, Wang Y, Ying T, and Dimitrov D S. 2012. Bispecific Engineered Antibody Domains (Nanoantibodies) That Interact Noncompetitively with an HIV-1 Neutralizing Epitope and FcRn. PLoS ONE, 7: e42288.PubMedCrossRefGoogle Scholar
  38. Greenough T C, Babcock G J, Roberts A, Hernandez H J, Thomas W D, Jr., Coccia J A, Graziano R F, Srinivasan M, Lowy I, Finberg R W, Subbarao K, Vogel L, Somasundaran M, Luzuriaga K, Sullivan J L, and Ambrosino D M. 2005. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J Infect Dis, 191: 507–514.PubMedCrossRefGoogle Scholar
  39. Haynes B F, Kelsoe G, Harrison S C, and Kepler T B. 2012. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Nat Biotechnol, 30: 423–433.PubMedCrossRefGoogle Scholar
  40. Higo-Moriguchi K, Akahori Y, Iba Y, Kurosawa Y, and Taniguchi K. 2004. Isolation of human monoclonal antibodies that neutralize human rotavirus. J Virol, 78: 3325–3332.PubMedCrossRefGoogle Scholar
  41. Huang C C, Tang M, Zhang M Y, Majeed S, Montabana E, Stanfield R L, Dimitrov D S, Korber B, Sodroski J, Wilson I A, Wyatt R, and Kwong P D. 2005. Structure of a V3-containing HIV-1 gp120 core. Science, 310: 1025–1028.PubMedCrossRefGoogle Scholar
  42. Huang C C, Venturi M, Majeed S, Moore M J, Phogat S, Zhang M Y, Dimitrov D S, Hendrickson W A, Robinson J, Sodroski J, Wyatt R, Choe H, Farzan M, and Kwong P D. 2004. Structural basis of tyrosine sulfation and VH-gene usage in antibodies that recognize the HIV type 1 coreceptor-binding site on gp120. Proc Natl Acad Sci U S A, 101: 2706–2711.PubMedCrossRefGoogle Scholar
  43. Hwang W C, Lin Y, Santelli E, Sui J, Jaroszewski L, Stec B, Farzan M, Marasco W A, and Liddington R C. 2006. Structural basis of neutralization by a human anti-severe acute respiratory syndrome spike protein antibody, 80R. J Biol Chem, 281: 34610–34616.PubMedCrossRefGoogle Scholar
  44. Jacobs S A, Diem M D, Luo J, Teplyakov A, Obmolova G, Malia T, Gilliland G L, and O’Neil K T. 2012. Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Engineering Design & Selection, 25: 107–117.CrossRefGoogle Scholar
  45. Kajihara M, Marzi A, Nakayama E, Noda T, Kuroda M, Manzoor R, Matsuno K, Feldmann H, Yoshida R, Kawaoka Y, and Takada A. 2012. Inhibition of Marburg virus budding by nonneutralizing antibodies to the envelope glycoprotein. J Virol, 86: 13467–13474.PubMedCrossRefGoogle Scholar
  46. Kaufmann B, Vogt M R, Goudsmit J, Holdaway H A, Aksyuk A A, Chipman P R, Kuhn R J, Diamond M S, and Rossmann M G. 2010. Neutralization of West Nile virus by cross-linking of its surface proteins with Fab fragments of the human monoclonal antibody CR4354. Proc Natl Acad Sci U S A, 107: 18950–18955.PubMedCrossRefGoogle Scholar
  47. Koide A, Wojcik J, Gilbreth R N, Hoey R J, and Koide S. 2012. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. J Mol Biol, 415: 393–405.PubMedCrossRefGoogle Scholar
  48. Kwong P D, and Mascola J R. 2012. Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. Immunity, 37: 412–425.PubMedCrossRefGoogle Scholar
  49. Kwong P D, Wyatt R, Robinson J, Sweet R W, Sodroski J, and Hendrickson W A. 1998. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature, 393: 648–659.PubMedCrossRefGoogle Scholar
  50. Lee J E, Fusco M L, Hessell A J, Oswald W B, Burton D R, and Saphire E O. 2008. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 454: 177–182.PubMedCrossRefGoogle Scholar
  51. Lee J E, Kuehne A, Abelson D M, Fusco M L, Hart M K, and Saphire E O. 2008. Complex of a protective antibody with its Ebola virus GP peptide epitope: unusual features of a V lambda x light chain. J Mol Biol, 375: 202–216.PubMedCrossRefGoogle Scholar
  52. Li F, Li W, Farzan M, and Harrison S C. 2005. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 309: 1864–1868.PubMedCrossRefGoogle Scholar
  53. Lindesmith L C, Beltramello M, Donaldson E F, Corti D, Swanstrom J, Debbink K, Lanzavecchia A, and Baric R S. 2012. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLoS Pathog, 8: e1002705.PubMedCrossRefGoogle Scholar
  54. Marasco W A, and Sui J. 2007. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol, 25: 1421–1434.PubMedCrossRefGoogle Scholar
  55. Marzi A, Yoshida R, Miyamoto H, Ishijima M, Suzuki Y, Higuchi M, Matsuyama Y, Igarashi M, Nakayama E, Kuroda M, Saijo M, Feldmann F, Brining D, Feldmann H, and Takada A. 2012. Protective efficacy of neutralizing monoclonal antibodies in a nonhuman primate model of Ebola hemorrhagic fever. PLoS ONE, 7: e36192.PubMedCrossRefGoogle Scholar
  56. Meng X, and Xiang Y. 2012. Generation and characterization of monoclonal antibodies specific for vaccinia virus. Methods Mol Biol, 890: 219–232.PubMedCrossRefGoogle Scholar
  57. Meuleman P, Catanese M T, Verhoye L, Desombere I, Farhoudi A, Jones C T, Sheahan T, Grzyb K, Cortese R, Rice C M, Leroux-Roels G, and Nicosia A. 2012. A human monoclonal antibody targeting scavenger receptor class B type I precludes hepatitis C virus infection and viral spread in vitro and in vivo. Hepatology, 55: 364–372.PubMedCrossRefGoogle Scholar
  58. Migone T S, Subramanian G M, Zhong J, Healey L M, Corey A, Devalaraja M, Lo L, Ullrich S, Zimmerman J, Chen A, Lewis M, Meister G, Gillum K, Sanford D, Mott J, and Bolmer S D. 2009. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med, 361: 135–144.PubMedCrossRefGoogle Scholar
  59. Muster T, Steindl F, Purtscher M, Trkola A, Klima A, Himmler G, Ruker F, and Katinger H. 1993. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol, 67: 6642–6647.PubMedGoogle Scholar
  60. Nakauchi M, Fukushi S, Saijo M, Mizutani T, Ure A E, Romanowski V, Kurane I, and Morikawa S. 2009. Characterization of monoclonal antibodies to Junin virus nucleocapsid protein and application to the diagnosis of hemorrhagic fever caused by South American arenaviruses. Clin Vaccine Immunol, 16: 1132–1138.PubMedCrossRefGoogle Scholar
  61. Nikolov D B, Broder C C, and et al. Submitted.Google Scholar
  62. Nybakken G E, Oliphant T, Johnson S, Burke S, Diamond M S, and Fremont D H. 2005. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature, 437: 764–769.PubMedCrossRefGoogle Scholar
  63. Ohta A, Fujita A, Murayama T, Iba Y, Kurosawa Y, Yoshikawa T, and Asano Y. 2009. Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner. Microbes Infect, 11: 1029–1036.PubMedCrossRefGoogle Scholar
  64. Oliphant T, Engle M, Nybakken G E, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung K M, Ebel G D, Kramer L D, Fremont D H, and Diamond M S. 2005. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med, 11: 522–530.PubMedCrossRefGoogle Scholar
  65. Pak J E, Sharon C, Satkunarajah M, Auperin T C, Cameron C M, Kelvin D J, Seetharaman J, Cochrane A, Plummer F A, Berry J D, and Rini J M. 2009. Structural insights into immune recognition of the severe acute respiratory syndrome coronavirus S protein receptor binding domain. J Mol Biol, 388: 815–823.PubMedCrossRefGoogle Scholar
  66. Prabakaran P, Streaker E, Chen W, and Dimitrov D S. 2011. 454 antibody sequencing-error characterization and correction. BMC Research Notes: In Press.Google Scholar
  67. Prabakaran P, Gan J, Wu Y Q, Zhang M Y, Dimitrov D S, and Ji X. 2006. Structural mimicry of CD4 by a cross-reactive HIV-1 neutralizing antibody with CDR-H2 and H3 containing unique motifs. J Mol Biol, 357: 82–99.PubMedCrossRefGoogle Scholar
  68. Prabakaran P, Zhu Z, Xiao X, Biragyn A, Dimitrov A S, Broder C C, and Dimitrov D S. 2009. Potent human monoclonal antibodies against SARS CoV, Nipah and Hendra viruses. Expert Opin Biol Ther, 9: 355–368.PubMedCrossRefGoogle Scholar
  69. Prabakaran P, Zhu Z, Chen W, Gong R, Feng Y, Streaker E, and Dimitrov D S. 2012. Origin, diversity, and maturation of human antiviral antibodies analyzed by high-throughput sequencing. Front Microbiol, 3: 277.PubMedCrossRefGoogle Scholar
  70. Prabakaran P, Gan J, Feng Y, Zhu Z, Choudhry V, Xiao X, Ji X, and Dimitrov D S. 2006. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem, 281: 15829–15836.PubMedCrossRefGoogle Scholar
  71. Qiu X, Alimonti J B, Melito P L, Fernando L, Stroher U, and Jones S M. 2011. Characterization of Zaire ebolavirus glycoprotein-specific monoclonal antibodies. Clin Immunol, 141: 218–227.PubMedCrossRefGoogle Scholar
  72. Rani M, Bolles M, Donaldson E F, Van Blarcom T, Baric R, Iverson B, and Georgiou G. 2012. Increased antibody affinity confers broad in vitro protection against escape mutants of severe acute respiratory syndrome coronavirus. J Virol, 86: 9113–9121.PubMedCrossRefGoogle Scholar
  73. Reichert J M. 2008. Monoclonal Antibodies as Innovative Therapeutics. Current Pharmaceutical Biotechnology, 9: 423–430.PubMedCrossRefGoogle Scholar
  74. Saijo M, Tang Q, Shimayi B, Han L, Zhang Y, Asiguma M, Tianshu D, Maeda A, Kurane I, and Morikawa S. 2005. Antigen-capture enzyme-linked immunosorbent assay for the diagnosis of crimean-congo hemorrhagic fever using a novel monoclonal antibody. J Med Virol, 77: 83–88.PubMedCrossRefGoogle Scholar
  75. Sanchez M D, Pierson T C, McAllister D, Hanna S L, Puffer B A, Valentine L E, Murtadha M M, Hoxie J A, and Doms R W. 2005. Characterization of neutralizing antibodies to West Nile virus. Virology, 336: 70–82.PubMedCrossRefGoogle Scholar
  76. Schrama D, Reisfeld R A, and Becker J C. 2006. Antibody targeted drugs as cancer therapeutics. Nature Reviews Drug Discovery, 5: 147–159.PubMedCrossRefGoogle Scholar
  77. Scott L J, and Lamb H M. 1999. Palivizumab. Drugs, 58: 305–311; discussion 312–303.PubMedCrossRefGoogle Scholar
  78. Shedlock D J, Bailey M A, Popernack P M, Cunningham J M, Burton D R, and Sullivan N J. 2010. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms. Virology, 401: 228–235.PubMedCrossRefGoogle Scholar
  79. Stiegler G, Kunert R, Purtscher M, Wolbank S, Voglauer R, Steindl F, and Katinger H. 2001. A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. Aids Research and Human Retroviruses, 17: 1757–1765.PubMedCrossRefGoogle Scholar
  80. Strokappe N, Szynol A, Aasa-Chapman M, Gorlani A, Forsman Quigley A, Hulsik D L, Chen L, Weiss R, de Haard H, and Verrips T. 2012. Llama antibody fragments recognizing various epitopes of the CD4bs neutralize a broad range of HIV-1 subtypes A, B and C. PLoS ONE, 7: e33298.PubMedCrossRefGoogle Scholar
  81. Sui J, Hwang W C, Perez S, Wei G, Aird D, Chen L M, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox N J, Bankston L A, Donis R O, Liddington R C, and Marasco W A. 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol, 16: 265–273.PubMedCrossRefGoogle Scholar
  82. ter Meulen J, van den Brink E N, Poon L L, Marissen W E, Leung C S, Cox F, Cheung C Y, Bakker A Q, Bogaards J A, van Deventer E, Preiser W, Doerr H W, Chow V T, de Kruif J, Peiris J S, and Goudsmit J. 2006. Human monoclonal antibody combination against SARS coronavirus: synergy and coverage of escape mutants. PLoS Med, 3: e237.PubMedCrossRefGoogle Scholar
  83. Throsby M, van den Brink E, Jongeneelen M, Poon L L, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, and Goudsmit J. 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE, 3: e3942.PubMedCrossRefGoogle Scholar
  84. Traggiai E, Becker S, Subbarao K, Kolesnikova L, Uematsu Y, Gismondo M R, Murphy B R, Rappuoli R, and Lanzavecchia A. 2004. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nature Medicine, 10: 871–875.PubMedCrossRefGoogle Scholar
  85. Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore J P, and Katinger H. 1996. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol, 70: 1100–1108.PubMedGoogle Scholar
  86. van Boheemen S, de Graaf M, Lauber C, Bestebroer T M, Raj V S, Zaki A M, Osterhaus A D, Haagmans B L, Gorbalenya A E, Snijder E J, and Fouchier R A. 2012. Genomic characterization of a newly discovered coronavirus associated with acute respiratory distress syndrome in humans. MBio, 3.Google Scholar
  87. van Gils M J, and Sanders R W. 2013. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. Virology, 435: 46–56.PubMedCrossRefGoogle Scholar
  88. Verkoczy L, Kelsoe G, Moody M A, and Haynes B F. 2011. Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr Opin Immunol, 23: 383–390.PubMedCrossRefGoogle Scholar
  89. Waldmann T A. 2003. Immunotherapy: past, present and future. Nature Medicine, 9: 269–277.PubMedCrossRefGoogle Scholar
  90. Weiner L M, Dhodapkar M V, and Ferrone S. 2009. Monoclonal antibodies for cancer immunotherapy. Lancet, 373: 1033–1040.PubMedCrossRefGoogle Scholar
  91. Whittle J R, Zhang R, Khurana S, King L R, Manischewitz J, Golding H, Dormitzer P R, Haynes B F, Walter E B, Moody M A, Kepler T B, Liao H X, and Harrison S C. 2011. Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci U S A, 108: 14216–14221.PubMedCrossRefGoogle Scholar
  92. Wilson J A, Hevey M, Bakken R, Guest S, Bray M, Schmaljohn A L, and Hart M K. 2000. Epitopes involved in antibody-mediated protection from Ebola virus. Science, 287: 1664–1666.PubMedCrossRefGoogle Scholar
  93. Xiao X, Feng Y, Vu B K, Ishima R, and Dimitrov D S. 2009. A large library based on a novel (CH2) scaffold: identification of HIV-1 inhibitors. Biochem Biophys Res Commun, 387: 387–392.PubMedCrossRefGoogle Scholar
  94. Xiao X, Chen W, Feng Y, Zhu Z, Prabakaran P, Wang Y, Zhang M Y, Longo N S, and Dimitrov D S. 2009. Germline-like predecessors of broadly neutralizing antibodies lack measurable binding to HIV-1 envelope glycoproteins: implications for evasion of immune responses and design of vaccine immunogens. Biochem Biophys Res Commun, 390: 404–409.PubMedCrossRefGoogle Scholar
  95. Xiao X D, Chen W Z, Feng Y, and Dimitrov D S. 2009. Maturation Pathways of Cross-Reactive HIV-1 Neutralizing Antibodies. Viruses-Basel, 1: 802–817.CrossRefGoogle Scholar
  96. Xu K, Rajashankar K R, Chan Y P, Himanen J P, Broder C C, and Nikolov D B. 2008. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Proc Natl Acad Sci U S A, 105: 9953–9958.PubMedCrossRefGoogle Scholar
  97. Yang Z Y, Werner H C, Kong W P, Leung K, Traggiai E, Lanzavecchia A, and Nabel G J. 2005. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci U S A, 102: 797–801.PubMedCrossRefGoogle Scholar
  98. Ye J Q, Shao H X, and Perez D R. 2012. Passive immune neutralization strategies for prevention and control of influenza A infections. Immunotherapy, 4: 175–186.PubMedCrossRefGoogle Scholar
  99. Ying T, Chen W, Gong R, Feng Y, and Dimitrov D S. 2012. Soluble monomeric IgG1 Fc. J Biol Chem, 287: 19399–19408.PubMedCrossRefGoogle Scholar
  100. Zhang M Y, Choudhry V, Xiao X, and Dimitrov D S. 2005. Human monoclonal antibodies to the S glycoprotein and related proteins as potential therapeutics for SARS. Curr Opin Mol Ther, 7: 151–156.PubMedGoogle Scholar
  101. Zhang M Y, Xiao X, Sidorov I A, Choudhry V, Cham F, Zhang P F, Bouma P, Zwick M, Choudhary A, Montefiori D C, Broder C C, Burton D R, Quinnan G V, Jr., and Dimitrov D S. 2004. Identification and characterization of a new cross-reactive human immunodeficiency virus type 1-neutralizing human monoclonal antibody. J Virol, 78: 9233–9242.PubMedCrossRefGoogle Scholar
  102. Zhu Z, Bossart K N, Bishop K A, Crameri G, Dimitrov A S, McEachern J A, Feng Y, Middleton D, Wang L F, Broder C C, and Dimitrov D S. 2008. Exceptionally potent cross-reactive neutralization of Nipah and Hendra viruses by a human monoclonal antibody. J Infect Dis, 197: 846–853.PubMedCrossRefGoogle Scholar
  103. Zhu Z, Dimitrov A S, Bossart K N, Crameri G, Bishop K A, Choudhry V, Mungall B A, Feng Y R, Choudhary A, Zhang M Y, Feng Y, Wang L F, Xiao X, Eaton B T, Broder C C, and Dimitrov D S. 2006. Potent neutralization of Hendra and Nipah viruses by human monoclonal antibodies. J Virol, 80: 891–899.PubMedCrossRefGoogle Scholar
  104. Zhu Z, Chakraborti S, He Y, Roberts A, Sheahan T, Xiao X, Hensley L E, Prabakaran P, Rockx B, Sidorov I A, Corti D, Vogel L, Feng Y, Kim J O, Wang L F, Baric R, Lanzavecchia A, Curtis K M, Nabel G J, Subbarao K, Jiang S, and Dimitrov D S. 2007. Potent cross-reactive neutralization of SARS coronavirus isolates by human monoclonal antibodies. Proc Natl Acad Sci U S A, 104: 12123–12128.PubMedCrossRefGoogle Scholar
  105. Zhu Z, Qin H R, Chen W, Zhao Q, Shen X, Schutte R, Wang Y, Ofek G, Streaker E, Prabakaran P, Fouda G G, Liao H X, Owens J, Louder M, Yang Y, Klaric K A, Moody M A, Mascola J R, Scott J K, Kwong P D, Montefiori D, Haynes B F, Tomaras G D, and Dimitrov D S. 2011. Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol, 85: 11401–11408.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhongyu Zhu
    • 1
  • Ponraj Prabakaran
    • 1
    • 2
  • Weizao Chen
    • 1
  • Christopher C. Broder
    • 3
  • Rui Gong
    • 4
  • Dimiter S. Dimitrov
    • 1
  1. 1.Protein Interactions Group, National Cancer InstituteNational Institutes of HealthFrederickUSA
  2. 2.Basic Research ProgramScience Applications International Corporation-Frederick, Inc.FrederickUSA
  3. 3.Department of Microbiology and ImmunologyUniformed Services UniversityBethesdaUSA
  4. 4.Center for Emerging Infectious Diseases, Wuhan Institute of VirologyChinese Academy of SciencesWuhan, HubeiChina

Personalised recommendations