Virologica Sinica

, Volume 28, Issue 2, pp 65–70 | Cite as

Characterization of a putative filovirus vaccine: Virus-like particles

  • Karen A. O. Martins
  • Travis K. Warren
  • Sina Bavari


Filoviruses are hemorrhagic fever viruses endemic to parts of Africa and the Philippines. Infection carries with it a mortality rate of up to 90% and currently there are no effective vaccines or therapeutics available to combat infection. However, the filovirus virus-like particles (VLP), which are currently under development, have been shown to be a promising vaccine candidate. They provide protection from infection in the mouse, guinea pig, and nonhuman primate models of infection, eliciting high anti-glycoprotein antibody titers and T cell responses to viral proteins. In this review, we will highlight the development of the filovirus VLP and describe the current understanding of VLP immunogenicity and correlates of protection.


Filovirus Ebola Marburg Vaccine Virus-like particle Correlates of Protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. World Health Organization. 2012a. Outbreak news. Ebola, Democratic Republic of the Congo. Wkly Epidemiol Rec, 87: 421.Google Scholar
  2. World Health Organization. 2012b. Outbreak news. Marburg haemorrhagic fever, Uganda. Wkly Epidemiol Rec, 87: 414.Google Scholar
  3. Basler C F, and Amarasinghe G K. 2009. Evasion of interferon responses by Ebola and Marburg viruses. J Interferon Cytokine Res, 29: 511–520.PubMedCrossRefGoogle Scholar
  4. Bavari S, Bosio C M, Wiegand E, Ruthel G, Will A B, Geisbert T W, Hevey M, Schmaljohn C, Schmaljohn A, and Aman M J. 2002. Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med, 195: 593–602.PubMedCrossRefGoogle Scholar
  5. Bosio C M, Moore B D, Warfield K L, Ruthel G, Mohamadzadeh M, Aman M J, and Bavari S. 2004. Ebola and Marburg virus-like particles activate human myeloid dendritic cells. Virology, 326: 280–287.PubMedCrossRefGoogle Scholar
  6. Bosio C M, Aman M J, Grogan C, Hogan R, Ruthel G, Negley D, Mohamadzadeh M, Bavari S, and Schmaljohn A. 2003. Ebola and Marburg viruses replicate in monocyte-derived dendritic cells without inducing the production of cytokines and full maturation. J Infect Dis, 188: 1630–1638.PubMedCrossRefGoogle Scholar
  7. Bradfute S B, Dye J M, Jr., and Bavari S. 2011. Filovirus vaccines. Hum Vaccin, 7: 701–711.PubMedCrossRefGoogle Scholar
  8. Bray M, Davis K, Geisbert T, Schmaljohn C, and Huggins J. 1998. A mouse model for evaluation of prophylaxis and therapy of Ebola hemorrhagic fever. J Infect Dis, 178: 651–661.PubMedCrossRefGoogle Scholar
  9. Cardenas W B, Loo Y M, Gale M, Jr., Hartman A L, Kimberlin C R, Martinez-Sobrido L, Saphire E O, and Basler C F. 2006. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol, 80: 5168–5178.PubMedCrossRefGoogle Scholar
  10. Chang T H, Kubota T, Matsuoka M, Jones S, Bradfute S B, Bray M, and Ozato K. 2009. Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS Pathog, 5: e1000493.PubMedCrossRefGoogle Scholar
  11. Feldmann H, Klenk H D, and Sanchez A. 1993. Molecular biology and evolution of filoviruses. Arch Virol Suppl, 7: 81–100.PubMedCrossRefGoogle Scholar
  12. Johnson R F, Bell P, and Harty R N. 2006. Effect of Ebola virus proteins GP, NP and VP35 on VP40 VLP morphology. Virol J, 3: 31.PubMedCrossRefGoogle Scholar
  13. Leung L W, Park M S, Martinez O, Valmas C, Lopez C B, and Basler C F. 2011. Ebolavirus VP35 suppresses IFN production from conventional but not plasmacytoid dendritic cells. Immunol Cell Biol, 89: 792–802.PubMedCrossRefGoogle Scholar
  14. Licata J M, Johnson R F, Han Z, and Harty R N. 2004. Contribution of ebola virus glycoprotein, nucleoprotein, and VP24 to budding of VP40 virus-like particles. J Virol, 78: 7344–7351.PubMedCrossRefGoogle Scholar
  15. Makino A, Yamayoshi S, Shinya K, Noda T, and Kawaoka Y. 2011. Identification of amino acids in Marburg virus VP40 that are important for virus-like particle budding. J Infect Dis, 204Suppl 3: S871–877.PubMedCrossRefGoogle Scholar
  16. Martinez O, Valmas C, and Basler C F. 2007. Ebola virus-like particle-induced activation of NF-kappaB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology, 364: 342–354.PubMedCrossRefGoogle Scholar
  17. Okumura A, Pitha P M, and Harty R N. 2008. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc Natl Acad Sci U S A, 105: 3974–3979.PubMedCrossRefGoogle Scholar
  18. Sullivan N J, Martin J E, Graham B S, and Nabel G J. 2009. Correlates of protective immunity for Ebola vaccines: implications for regulatory approval by the animal rule. Nat Rev Microbiol, 7: 393–400.PubMedCrossRefGoogle Scholar
  19. Swenson D L, Warfield K L, Negley D L, Schmaljohn A, Aman M J, and Bavari S. 2005. Virus-like particles exhibit potential as a pan-filovirus vaccine for both Ebola and Marburg viral infections. Vaccine, 23: 3033–3042.PubMedCrossRefGoogle Scholar
  20. Swenson D L, Warfield K L, Kuehl K, Larsen T, Hevey M C, Schmaljohn A, Bavari S, and Aman M J. 2004. Generation of Marburg virus-like particles by co-expression of glycoprotein and matrix protein. FEMS Immunol Med Microbiol, 40: 27–31.PubMedCrossRefGoogle Scholar
  21. Swenson D L, Wang D, Luo M, Warfield K L, Woraratanadharm J, Holman D H, Dong J Y, and Pratt W D. 2008. Vaccine to confer to nonhuman primates complete protection against multistrain Ebola and Marburg virus infections. Clin Vaccine Immunol, 15: 460–467.PubMedCrossRefGoogle Scholar
  22. Wahl-Jensen V, Kurz S K, Hazelton P R, Schnittler H J, Stroher U, Burton D R, and Feldmann H. 2005. Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol, 79: 2413–2419.PubMedCrossRefGoogle Scholar
  23. Wahl-Jensen V, Kurz S, Feldmann F, Buehler L K, Kindrachuk J, DeFilippis V, da Silva Correia J, Fruh K, Kuhn J H, Burton D R, and Feldmann H. 2011. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLoS Negl Trop Dis, 5: e1359.PubMedCrossRefGoogle Scholar
  24. Wahl-Jensen V M, Afanasieva T A, Seebach J, Stroher U, Feldmann H, and Schnittler H J. 2005. Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol, 79: 10442–10450.PubMedCrossRefGoogle Scholar
  25. Warfield K L, Deal E M, and Bavari S. 2009. Filovirus infections. J Am Vet Med Assoc, 234: 1130–1139.PubMedCrossRefGoogle Scholar
  26. Warfield K L, Swenson D L, Negley D L, Schmaljohn A L, Aman M J, and Bavari S. 2004. Marburg virus-like particles protect guinea pigs from lethal Marburg virus infection. Vaccine, 22: 3495–3502.PubMedCrossRefGoogle Scholar
  27. Warfield K L, Swenson D L, Olinger G G, Kalina W V, Aman M J, and Bavari S. 2007. Ebola virus-like particle-based vaccine protects nonhuman primates against lethal Ebola virus challenge. J Infect Dis, 196Suppl 2: S430–437.PubMedCrossRefGoogle Scholar
  28. Warfield K L, Bosio C M, Welcher B C, Deal E M, Mohamadzadeh M, Schmaljohn A, Aman M J, and Bavari S. 2003. Ebola virus-like particles protect from lethal Ebola virus infection. Proc Natl Acad Sci U S A, 100: 15889–15894.PubMedCrossRefGoogle Scholar
  29. Warfield K L, Olinger G, Deal E M, Swenson D L, Bailey M, Negley D L, Hart M K, and Bavari S. 2005. Induction of humoral and CD8+ T cell responses are required for protection against lethal Ebola virus infection. J Immunol, 175: 1184–1191.PubMedGoogle Scholar
  30. Warfield K L, Perkins J G, Swenson D L, Deal E M, Bosio C M, Aman M J, Yokoyama W M, Young H A, and Bavari S. 2004. Role of natural killer cells in innate protection against lethal ebola virus infection. J Exp Med, 200: 169–179.PubMedCrossRefGoogle Scholar
  31. Warfield K L, Posten N A, Swenson D L, Olinger G G, Esposito D, Gillette W K, Hopkins R F, Costantino J, Panchal R G, Hartley J L, Aman M J, and Bavari S. 2007. Filovirus-like particles produced in insect cells: immunogenicity and protection in rodents. J Infect Dis, 196Suppl 2: S421–429.PubMedCrossRefGoogle Scholar
  32. Yasuda J, Nakao M, Kawaoka Y, and Shida H. 2003. Nedd4 regulates egress of Ebola virus-like particles from host cells. J Virol, 77: 9987–9992.PubMedCrossRefGoogle Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Karen A. O. Martins
    • 1
  • Travis K. Warren
    • 1
  • Sina Bavari
    • 1
  1. 1.US Army Medical Research Institute of Infectious DiseasesFort DetrickUSA

Personalised recommendations