Virologica Sinica

, Volume 28, Issue 2, pp 109–115 | Cite as

Potent T cell responses induced by single DNA vaccine boosted with recombinant vaccinia vaccine

Research Article

Abstract

Plasmid DNA, an effective vaccine vector, can induce both cellular and humoral immune responses. However, plasmid DNA raises issues concerning potential genomic integration after injection. This issue should be considered in preclinical studies. Tiantan vaccinia virus (TV) has been most widely utilized in eradicating smallpox in China. This virus has also been considered as a successful vaccine vector against a few infectious diseases. Potent T cell responses through T-cell receptor (TCR) could be induced by three injections of the DNA prime vaccine followed by a single injection of recombinant vaccinia vaccine. To develop a safer immunization strategy, a single DNA prime followed by a single recombinant Tiantan vaccinia (rTV) AIDS vaccine was used to immunize mice. Our data demonstrated that one DNA prime/rTV boost regimen induced mature TCR activation with high functional avidity, preferential T cell Vβ receptor usage and high sensitivity to anti-CD3 antibody stimulation. No differences in T cell responses were observed among one, two or three DNA prime/rTV boost regimens. This study shows that one DNA prime/rTV boost regimen is sufficient to induce potent T cell responses against HIV.

Keywords

HIV Vaccine T cell responses Prime-boost regimen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alarcon J B, Waine G W, McManus D P. 1999. DNA vaccines: technology and application as anti-parasite and anti-microbial agents. Adv Parasitol. 42:343–410.PubMedCrossRefGoogle Scholar
  2. Betts M R, Nason M C, West S M, De Rosa S C, Migueles S A, Abraham J, Lederman M M, Benito J M, Goepfert P A, Connors M, Roederer M, Koup R A. 2006. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood. 107(12):4781–4789.PubMedCrossRefGoogle Scholar
  3. Buchinder S P, Mehrotra D V, Duerr A, Fitzgerald D W, Mogg R, Li D, Gilbert P B, Lama J R, Marmor M, Del Rio C, McElrath M J, Casimiro D R, Gottesdiener K M, Chodakewitz J A, Corey L, Robertson M N; Step Study Protocol Team. 2008. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet. 372(9653):1881–1893.CrossRefGoogle Scholar
  4. Excler J L, Plotkin S. 1997. The prime-boost concept applied to HIV preventive vaccines. AIDS. 11Suppl A:S127–137.PubMedGoogle Scholar
  5. Gu S, Huang T, Miao Y, Ruan L, Zhao Y, Han C, Xiao Y, Zhu J, Wolf H. 1991. A preliminary study on the immunogenicity in rabbits and in human volunteers of a recombinant vaccinia virus expressing Epstein-Barr virus membrane antigen. Chin Med Sci J. 6(4):241–243.PubMedGoogle Scholar
  6. Guo K J, Ruan L, Wang X J, Yi Y, Liu C B, Ren Y H, Zhang Y C, Liu X H, Gao S J, Yang J W, Zhu J M. 1992. The immunological effect of recombinant vaccinia virus (VMS11HAV25) expressing hepatitis A antigen in humans. Chin J Microbiol Immunol. 12(3):137–140.Google Scholar
  7. Hel Z, Tsai W P, Thornton A, Nacsa J, Giuliani L, Tryniszewska E, Poudyal M, Venzon D, Wang X, Altman J, Watkins D I, Lu W, von Gegerfelt A, Felber B K, Tartaglia J, Pavlakis G N, Franchini G. 2001. Potentiation of simian immunodeficiency virus (SIV)-specific CD4(+) and CD8(+) T cell responses by a DNA-SIV and NYVAC-SIV prime/boost regimen. J Immunol. 167(12):7180–7191.PubMedGoogle Scholar
  8. Huang X, Xu J, Ren L, Qiu C, Zhang N, Liu L X, Wan Y M, Peng H, Shao Y M. 2006. Intranasal priming with HIV DNA vaccine and systemic boosting with recombinant vaccinia induce vigorous immune responses: experiment with mice. Zhonghua Yi Xue Za Zhi. 86(44):3109–3113.PubMedGoogle Scholar
  9. Ledwith B J, Manam S, Troilo P J, Barnum A B, Pauley C J, Griffiths T G 2nd, Harper L B, Schock H B, Zhang H, Faris J E, Way P A, Beare C M, Bagdon W J, Nichols W W. 2000. Plasmid DNA vaccines: assay for integration into host genomic DNA. Dev Biol (Basel). 104:33–43.Google Scholar
  10. Martin T, Parker S E, Hedstrom R, Le T, Hoffman S L, Norman J, Hobart P, Lew D. 1999. Plasmid DNA malaria vaccine: the potential for genomic integration after intramuscular injection. Hum Gene Ther. 10:759–768.PubMedCrossRefGoogle Scholar
  11. Montgomery D L, Ulmer J B, Donnelly J J, Liu M A. 1997. DNA vaccines. Pharmacol Ther. 74(2):195–205.PubMedCrossRefGoogle Scholar
  12. Potter S J, Lacabaratz C, Lambotte O, Perez-Patrigeon S, Vingert B, Sinet M, Colle J H, Urrutia A, Scott-Algara D, Boufassa F, Delfraissy J F, Thèze J, Venet A, Chakrabarti L A. 2007. Preserved central memory and activated effector memory CD4+ T-cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study. J Virol. 81(24):13904–13915.PubMedCrossRefGoogle Scholar
  13. Ramshaw I A, Ramsay A J. 2000. The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today. 21(4):163–165.PubMedCrossRefGoogle Scholar
  14. Ren L, Qiu C, Huang X G, Pan X, Xu J Q, Shao Y M. 2006. Construction and immunogenecity analysis of HIV-1 B_ gag-env DNA vaccine. Chin J Microbiol Immunol. 26(7):654–658.Google Scholar
  15. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Kaewkungwal J, Chiu J, Paris R, Premsri N, Namwat C, de Souza M, Adams E, Benenson M, Gurunathan S, Tartaglia J, McNeil J G, Francis D P, Stablein D, Birx D L, Chunsuttiwat S, Khamboonruang C, Thongcharoen P, Robb M L, Michael N L, Kunasol P, Kim J H; MOPH-TAVEG Investigators. 2009. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med. 361(23):2209–2220.PubMedCrossRefGoogle Scholar
  16. Robinson H L, Pertmer T M. 2000. DNA vaccines for viral infections: basic studies and applications. Adv Virus Res. 55:1–74.PubMedCrossRefGoogle Scholar
  17. Saez-Cirion A, Lacabaratz C, Lambotte O, Versmisse P, Urrutia A, Boufassa F, Barré-Sinoussi F, Delfraissy J F, Sinet M, Pancino G, Venet A; Agence Nationale de Recherches sur le Sida EP36 HIV Controllers Study Group. 2007. HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci U S A. 104(16):6776–6781.PubMedCrossRefGoogle Scholar
  18. Saez-Cirion A, Sinet M, Shin S Y, Urrutia A, Versmisse P, Lacabaratz C, Boufassa F, Avettand-Fènoël V, Rouzioux C, Delfraissy JF, Barré-Sinoussi F, Lambotte O, Venet A, Pancino G; ANRS EP36 HIV Controllers Study Group. 2009. Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses. J Immunol. 182:7828–7837.PubMedCrossRefGoogle Scholar
  19. Schneider J, Gilbert S C, Blanchard T J, Hanke T, Robson K J, Hannan C M, Becker M, Sinden R, Smith G L, Hill A V. 1998. Enhanced immunogenicity for CD8+ T cell induction and complete protective efficacy of malaria DNA vaccination by boosting with modified vaccinia virus Ankara. Nat Med. 4(4):397–402.PubMedCrossRefGoogle Scholar
  20. Shiver J W, Fu T M, Chen L, Casimiro D R, Davies M E, Evans R K, Zhang Z Q, Simon A J, Trigona W L, Dubey S A, Huang L, Harris V A, Long R S, Liang X, Handt L, Schleif W A, Zhu L, Freed D C, Persaud N V, Guan L, Punt K S, Tang A, Chen M, Wilson K A, Collins K B, Heidecker G J, Fernandez V R, Perry H C, Joyce J G, Grimm K M, Cook J C, Keller P M, Kresock D S, Mach H, Troutman R D, Isopi L A, Williams D M, Xu Z, Bohannon K E, Volkin D B, Montefiori D C, Miura A, Krivulka G R, Lifton M A, Kuroda M J, Schmitz J E, Letvin N L, Caulfield M J, Bett A J, Youil R, Kaslow D C, Emini E A. 2002. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency virus immunity. Nature. 415(6869):331–335.PubMedCrossRefGoogle Scholar
  21. Vilalta A, Mahajan R K, Hartikka J, Rusalov D, Martin T, Bozoukova V, Leamy V, Hall K, Lalor P, Rolland A, Kaslow D C. 2005. I. Poloxamer-formulated plasmid DNA-based human cytomegalovirus vaccine: evaluation of plasmid DNA biodistribution/persistence and integration. Hum Gene Ther. 16:1143–1150.PubMedCrossRefGoogle Scholar
  22. Wang Z, Troilo P J, Wang X, Griffiths T G, Pacchione S J, Barnum A B, Harper L B, Pauley C J, Niu Z, Denisova L, Follmer T T, Rizzuto G, Ciliberto G, Fattori E, Monica N L, Manam S, Ledwith B J. 2004. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther. 11:711–721.PubMedCrossRefGoogle Scholar
  23. Wolff J A, Malone R W, Williams P, Chong W, Acsadi G, Jani A, Felgner P L. 1990. Direct gene transfer into mouse muscle in vivo. Science. 247(4949 Pt 1):1465–1468.PubMedCrossRefGoogle Scholar
  24. Xu J, Ren L, Huang X, Qiu C, Liu Y, Liu Y, Shao Y. 2006. Sequential priming and boosting with heterologous HIV immunogens predominantly stimulated T cell immunity against conserved epitopes. AIDS. 20(18):2293–2303.PubMedCrossRefGoogle Scholar
  25. Zhao K, Zhang Y H, Li H M. 1995. Medical Biology Product. (2nd ed.) People’s Medical Publishing House, Beijing.Google Scholar

Copyright information

© Wuhan Institute of Virology, CAS and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Virology, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
  2. 2.State Key Laboratory for Infectious Diseases Prevention and Control, National Center for AIDS/STD Control and PreventionChinese Center for Disease Control and PreventionBeijingChina
  3. 3.Science Research Department, Shanghai Public Health Clinical CenterPublic Health Clinical Center affiliated to Fudan UniversityShanghaiChina

Personalised recommendations